
z/OS

JES2 Macros

SA22-7536-02

IBM

z/OS

JES2 Macros

SA22-7536-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 405.

Third Edition, September 2002

This is a major revision of SA22–7536–01.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), z/OS.e(5655-G52) and to all subsequent releases
and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xix

Tables . xxi

About This Document . xxiii
Who Should Use This Document xxiii
Where to Find More Information xxiii
Additional Information . xxiii

Accessing z/OS™ licensed documents on the Internet xxiv
Using LookAt to look up message explanations xxiv
Determining If a Publication Is Current. xxiv

Summary of Changes . xxvii

Chapter 1. Macro Overview . 1
How to read syntax diagrams . 2

Symbols . 2
Syntax items . 2
Syntax examples . 3

Macro Expansion . 4
Specify JES2 Macro Instructions 5
Basic Notation Used To Describe Macro Instructions 6

Operand Representation . 6
Operands with Value Mnemonics. 6
Coded Value Operands . 7
Metasymbols . 8

Special Register Notation . 9
Register Stability. 9

Macro Selection Table . 10
Using the $JCTX Macro Extension Service 11

Determining the Amount of Spool Space Used by $JCT Extensions 11
Examples of the $JCTX Macro Extension Service 12
Example 1: Transmitting Separator Notes Through $JCT Extensions 12
Example 2: Using $JCTX Extensions To Maintain Spool Compatibility. . . . 13
Sample Exit 6 for Spool Compatibility 14

Chapter 2. Macro Names List 17
Executable Macros . 17
Mapping Macros . 18

Chapter 3. JES2 Programmer Macros 19
$$POST – Post a JES2 Event Complete from Another Task 19

Format Description . 19
Environment . 22

$$WTO – JES2 Subtask Write to Operator 22
Format Description . 23
Environment . 23

$$WTOR – JES2 Subtask Write to Operator with Reply 23
Format Description . 24
Environment . 24

$#ADD – Add a Work/Characteristics JOE Pair to the JOT 24
Format Description . 24
Return Codes . 25

© Copyright IBM Corp. 1988, 2002 iii

||
||
||

Environment . 25
$#ALCHK – Obtain a Spool Record for Output Checkpointing. 25

Format Description . 26
Environment . 27

$#BLD – Format JOEs . 27
Format Description . 27
Environment . 27

$#BUSY – Set or Test the Busy System Indicator of a JOE 27
Format Description . 28
Environment . 29

$#CAN – Cancel All Work Items Not Currently Being Processed for a Specific
Job . 30
Format Description . 30
Environment . 30

$#CHK – Process Print/Punch Checkpoint Spool I/O 30
Format Description . 30
Environment . 31

$#DISPRO – Process JOE Disposition 31
Format Description . 31
Environment . 32

$#GET – Search the JOT Class Queues for an Output Element which Matches
the Requesting Specification 32
Format Description . 33
Environment . 34

$#GETHDJ – Get Held JOE . 34
Format Description . 34
Environment . 35

$#JOE – Find and Validate Queue. 35
Format Description . 35
Environment . 37

$#JWEL – JOE Writer Exclude List (JWEL) Services 37
Format Description . 38
Programming Considerations. 40
Return Codes . 41
Environment . 41

$#MOD – Move a Work JOE from One Queue to Another in the JOT 42
Format Description . 42
Environment . 42

$#POST – Post Output Device Processors 42
Format Description . 42
Environment . 43

$#PUT – Return an Unfinished Job Output Element (JOE) to the JOT for Later
Processing . 43
Format Description . 43
Environment . 44

$#REM – Remove a Work/Characteristics JOE Pair from the JOT 44
Format Description . 44
Environment . 45

$#REP – Replace a Work or Characteristics JOE 45
Format Description . 45
Return Codes . 46
Environment . 46

$#TJEV – Manage the Thread JOE Exclusion Vector 46
Format Description . 46
Return Codes . 47
Environment . 48

iv z/OS V1R4.0 JES2 Macros

$ACTIVE – Specify Processor is Active 48
Format Description . 48
Environment . 48

$ALLOC – Allocate a Unit Record Device 48
Format Description . 48
Environment . 49

$ALESERV – JES2 ALET Services 49
Format Description . 49
Programming Notes . 50
Return Codes . 50
Environment . 50

$AMODE – Set the Addressing Mode 50
Format Description . 50
Environment . 51

$ARMODE – JES2 Multi-Address Space Access 51
Format Description . 51
Environment . 52

$BERTTAB – Map Block Extension Reuse Table (BERT) Table Entries 52
Format Description . 52
Environment . 54

$BFRBLD – Construct a JES2 Buffer Prefix 54
Format Description . 54
Environment . 54

$BLDMSG – Build a Message Line 55
Format Description . 56
Register Contents When $BLDMSG is Invoked 61
Register Contents on Exit from $BLDMSG. 62
Return Codes . 62
Usage Notes. 62
Environment . 62

$BLDQC – Call the Quick Cell Build/Extend Routine 62
Format Description . 62
Environment . 63

$BLDTGB – Queue TGBs to the HASPOOL Processor 63
Format Description . 63
Environment . 63

$CALL – Call a Subroutine from JES2 63
Format Description . 64
Programming Considerations. 65
Environment . 65

$CBIO – Control Block I/O Routine 66
Format Description . 66
Register Contents When $CBIO is Invoked 69
Register Contents on Exit from $CBIO 70
Return Codes . 70
Environment . 70

$CFSEL – Select Label to Process a Command Operand String. 70
Format Description . 71
Register Contents When $CFSEL is Invoked 73
Register Contents on Exit from $CFSEL 73
Return Codes . 73
Usage Notes. 73
Environment . 74
Examples . 74
Example 1 . 74
Example 2 . 74

Contents v

Example 3 . 75
Example 4 . 75
Example 5 . 75
Example 6 . 75
Example 7 . 76

$CHECK – Check for Completion of a Checkpoint Write. 76
Format Description . 77
Environment . 77

$CKPT – Schedule the Checkpoint of an Element 78
Format Description . 78
Environment . 79

$CPOOL – Build/Delete/Modify/Query a Cell Pool 79
Format Description - Execute Form 80
Format Description - List Form 81
Return Codes . 85
Environment . 86

$CWTO – Command Processor Write to Operator 86
Format Description . 87
Usage Notes. 88
Environment . 89

$DCBDYN – Call the Dynamic DCB Service Routine 89
Format Description . 89
Return Codes . 89
Environment . 89

$DCTDYN – Call the Dynamic DCT Service Routine 89
Format Description . 90
Return Codes . 90
Environment . 90

$DCTTAB – Map DCT table entries 90
Format Description . 91
Environment . 94

$DEST – Convert Symbolic Destinations and Binary Route Codes 95
Format Description . 95
Return Codes . 99
Environment . 99

$DESTDYN – Attach a JES2 DESTID 99
Format Description . 99
Return Codes . 100
Environment . 100

$DILBERT – Do It Later BERT Services 100
Format Description . 100
Environment . 102
Return Codes . 102

$DISTERR – Indicate Disastrous Error. 103
Format Description . 103
Environment . 103

$DOGBERT – Deliver or Get BERT Data 103
Format Description . 104
Environment . 109
Return Codes . 109

$DOGCAT – Deliver or Get CAT (Class Attribute Table) 109
Format Description . 109
Environment . 111
Return Codes . 111

$DOGJQE – Deliver or Get JQE 111
Format Description . 112

vi z/OS V1R4.0 JES2 Macros

Return Codes . 116
Environment . 116

$DOGWSCQ – Deliver or Get Workload Management (WLM) Service Class 116
Format Description . 117
Environment . 118
Return Codes . 118

$DOM – Delete Operator Message 118
Format Description . 119
Environment . 119

$DORMANT – Specify Processor is Inactive. 119
Format Description . 119
Environment . 119

$DSPSERV – JES2 Data Space Services 119
Format Description . 120
Programming Considerations 123
Environment . 123

$DTEDYN – Call the Dynamic DTE Service Routines 123
Format Description . 123
Environment . 124

$DTETAB – Build and Map the DTE Tables 124
Format Description . 125
Environment . 126

$DVIDBLD – Build a Device Name from a Device Identifier 126
Format Description . 126
Environment . 127

$ENTRY – Provide Entry to JES2 Assembly Module. 127
Format Description . 127
Environment . 129

$ENVIRON – Set Assembly Environment 130
Format Description . 130
Environment . 131

$ERROR – Indicate Catastrophic Error 131
Format Description . 131
Environment . 132

$ESTAE – JES2 Error Recovery Environment 133
Format Description . 133
Environment . 134

$EXCP – Execute JES2 Channel Program 135
Format Description . 135
Environment . 136

$EXIT – Provide Exit Point . 136
Format Description . 136
Environment . 137

$EXTP – Initiate Remote Terminal Input/Output Operation 138
Format Description . 138
Environment . 139

$FRECEL – Free an Extended Common Storage Area (ECSA) Cell 139
Format Description . 139
Environment . 140

$FRECMB – Free a Console Message Buffer 140
Format Description . 140
Environment . 140

$FREEBUF – Return a JES2 Buffer to the JES2 Buffer Pool 140
Format Description . 141
Environment . 142

$FRELOK – Free the MVS CMS Lock, LOCAL, or JES2 Job Lock 142

Contents vii

Format Description . 142
Environment . 143

$FREMAIN – Branch-Entry FREEMAIN Services 143
Format Description . 143
Environment . 144

$FREQC – Free Quick Cell . 144
Format Description . 145
Environment . 145

$FREUCBS – Free UCB Parameter List Storage 146
Format Description . 146
Environment . 146

$FREUNIT – Release a Unit Device Control Table (DCT) 146
Format Description . 146
Environment . 147

$FSILINK – Link the Functional Subsystem Interface 147
Format Description . 147
Environment . 147

$GETABLE – Get HASP/USER Table Entries 147
Format Description . 148
Environment . 148

$GETADDR – Get a Control Block Address 149
Format Description . 149
Environment . 150

$GETASCB – Retrieve the Primary, Secondary, or Home ASCB 150
Format Description . 150
Environment . 151

$GETBLK – Get a Storage Cell from a Free Cell Pool 151
Format Description . 151
Environment . 152

$GETBUF – Acquire a Buffer from a JES2 Buffer Pool 152
Format Description . 152
Return Codes . 154
Environment . 154

$GETCEL – Acquire an Extended Common Storage (ECSA) Area Cell 154
Format Description . 155
Return Codes . 155
Environment . 156

$GETCMB – Get Console Message Buffers 156
Format Description . 156
Return Codes . 157
Register Contents When $GETCMB Returns Control 157
Environment . 157

$GETHP – Get High Private Cell Pool 157
Format Description . 157
Environment . 158
Programming Requirements 158

$GETLOK – Acquire the MVS CMS, LOCAL, or JES2 Job Lock 158
Format Description . 159
Environment . 159

$GETMAIN – Branch-Entry GETMAIN Services 159
Format Description . 160
Environment . 162

$GETQC – Call the Quick Cell Get Routine 162
Format Description . 162
Environment . 163

$GETRTN – Get the Address of a Routine 163

viii z/OS V1R4.0 JES2 Macros

Format Description . 164
Environment . 164

$GETSMFB – Acquire a JES2 SMF Buffer from the JES2 SMF Buffer Pool 165
Format Description . 165
Environment . 165

$GETUCBS – Obtain a UCB Address 165
Format Description . 165
Return Codes . 166
Programming Considerations 166
Environment . 167

$GETUNIT – Acquire a Unit Device Control Table (DCT) 167
Format Description . 167
Environment . 167

$GETWORK – Obtain a Work Area 167
Format Description . 168
Environment . 169

$IOERROR – Log Input/Output Error 169
Format Description . 169
Environment . 169

$IOTBLD – Build an Input/Output Table (IOT) 169
Format Description . 169
Return Codes . 170
Environment . 170

$JBIDBLD – Build A JES2 Job ID from a Binary Job Number 170
Format Description . 170
Environment . 171

$JCAN – Cancel Job . 171
Format Description . 171
Environment . 173

$JCTXADD – Add a $JCT Control Block Extension 173
Format Description . 174
Return Codes . 175
Environment . 176
Programming Requirements 176
Restrictions. 176
Registers on Entry . 176
Registers on Exit. 176
Example . 176

$JCTXEXP – Expand a $JCT Control Block Extension 177
Format Description . 177
Return Codes . 179
Environment . 179
Programming Requirements 179
Restrictions. 180
Registers on Entry . 180
Registers on Exit. 180
Example . 180

$JCTXGET – Locate a $JCT Control Block Extension 180
Format Description . 181
Return Codes . 182
Environment . 182
Programming Requirements 182
Restrictions. 182
Registers on Entry . 182
Registers on Exit. 182
Example . 183

Contents ix

$JCTXREM – Remove a $JCT Control Block Extension 183
Format Description . 183
Return Codes . 184
Environment . 184
Programming Requirements 185
Restrictions. 185
Registers on Entry . 185
Registers on Exit. 185
Example . 185

$JQEJNUM. 185
Format Description . 185
Return Codes . 185
Environment . 186

$LOGMSG – Log a Job-related Message. 186
Format Description . 186
Return Codes . 187
Environment . 187

$MID – Assign JES2 Message Identification. 187
Format Description . 187
Environment . 188

$MODCHK – Load Module Verification. 188
Format Description . 188
Return Codes . 189
Environment . 190

$MODELET – Load Module Deletion 190
Format Description . 191
Return Codes . 191
Environment . 191

$MODEND – Generate End of Module. 191
Format Description . 191
Environment . 191

$MODLOAD – Module Load 192
Format Description . 192
Return Codes . 193
Environment . 193

$MODULE – Prepare a JES2 Module or Expand Control Block Mappings 194
Preparing a JES2 Module 194
Expanding MVS or JES2 Control Block Mappings 194
Format Description - Preparing a JES2 Module 195
Format Description - Expanding Control Block Mappings 195
Parameter Descriptions . 195
Environment . 205

$MSG – Write to Operator Message Area 205
Format Description . 205
Environment . 206

$MVCL – Move More Than 256 Bytes of Storage. 206
Format Description . 206
Environment . 207

$NATGET – Locate an Element in the NAT 207
Format Description . 207
Return Codes . 208
Environment . 208

$NHDADD – Adds an Installation-Defined Section to an NJE Data Area . . . 209
Format Description . 209
Return Codes . 210

$NHDEXP – Expand an NJE Data Area 210

x z/OS V1R4.0 JES2 Macros

Format Description . 211
Return Codes . 211

$NHDGET – Get the Network Header Section 212
Format Description . 212
Environment . 213

$NHDREM – Removes an Installation-Defined Section from a NJE Data Area 213
Format Description . 213
Return Codes . 214

$NHDXMT – Transmitting an NJE Data Area Across the Network 214
Format Description . 214
Return Codes . 215
Environment . 215

$PAIR – Define a Table Pair 215
Format Description . 216
Environment . 217

$PATCHSP – Generate Patch Space 217
Format Description . 217
Environment . 217

$PBLOCK – Block Letter Services 217
Format Description . 218
Environment . 218

$PCEDYN – Attach or Delete a JES2 PCE 218
Format Description . 219
Environment . 220

$PCETAB – Generate or Map PCE Table Entries 220
Format Description . 220
Environment . 224

$PCETERM – Processor Control Element (PCE) Termination 224
Format Description . 224
Environment . 224

$PDBBLD – Build a Peripheral Data Definition Block (PDDB) 224
Format Description . 225
Return Codes . 225
Environment . 225

$PDBFIND – Locate a Peripheral Data Definition Block (PDDB) 225
Format Description . 226
Return Codes . 226
Environment . 226

$PGSRVC – Perform a Virtual Page Service 226
Format Description . 226
Environment . 228

$POST – Post a JES2 Event Complete 228
Format Description . 228
Environment . 231

$POSTQ – Quick Post Facility. 231
Format Description . 232
Environment . 232

$POSTXEQ – Post the JES2 Execution Processor 232
Format Description . 232
Environment . 232

$PRPUT – Create Separator Pages. 233
Format Description . 233
Return Codes . 233
Environment . 234

$PURGE – Return Direct-Access Space 234
Format Description . 234

Contents xi

Environment . 234
$PUTABLE – Add Hasp/User Table Entry. 234

Format Description . 235
Return Codes . 235
Environment . 235

$QADD – Add Job Queue Element to the JES2 Job Queue 235
Format Description . 236
Environment . 236

$QBUSY – Set or Test the Busy System Indicator of a JQE 236
Format Description . 237
Environment . 238

$QCTGEN – Define a Quick Cell Control Table 238
Format Description . 239
Environment . 239

$QGET – Obtain Job Queue Element from the JES2 Job Queue 239
Format Description . 240
Environment . 241

$QJIX – JES2 Job Number Services 242
Format Description . 242
Return Codes . 243
Environment . 243

$QJQE – Obtain Address of JQE Queue Head. 243
Format Description . 244
Environment . 246

$QLOC – Locate Job Queue Element for Specific Job 246
Format Description . 246
Return Codes . 247
Environment . 247

$QLOCNXT . 247
Format Description . 247
Return Codes . 247
Environment . 248

$QMOD – Modify Job Queue Element in the JES2 Job Queue 248
Format Description . 248
Environment . 249

$QPUT – Return Job Queue Element to the JES2 Job Queue 249
Format Description . 249
Environment . 250

$QREM – Remove Job Queue Element from the JES2 Job Queue 250
Format Description . 250
Environment . 250

$QSUSE – Synchronize to Use Shared Queues 251
Format Description . 251
Environment . 252

$QUESMFB – Queue a JES2 SMF Buffer on the Busy Queue 252
Format Description . 252
Environment . 252

$QUEUE – Maintain a First-in First-out (FIFO) Queue 252
Format Description . 252
Environment . 253

$RDIRTAB – Build Table to Redirect Responses to Specific Commands . . . 253
Format Description . 253
Environment . 254

$REPLYV – Generate $REPLYV Table Entries 254
Format Description . 254
Environment . 255

xii z/OS V1R4.0 JES2 Macros

$RESTORE – Restore Registers from the Save Area 255
Format Description . 255
Environment . 256

$RETABLE – Removes Hasp/User Table Entry 256
Format Description . 256
Return Codes . 257
Environment . 257

$RETBLK – Return a Storage Cell to a Free Cell Pool 257
Format Description . 257
Environment . 257

$RETSAVE – Return a JES2 Save Area 257
Format Description . 258
Environment . 258

$RETURN – Restore Registers, Free the JES2 Save Area, and Return to the
Caller . 258
Format Description . 258
Environment . 259

$RETWORK – Return a Work Area 259
Format Description . 259
Environment . 259

$RUSE – Establish USING on a Register. 260
Format Description . 260
Environment . 260

$SAVE – Obtain JES2 Save Area and Save Registers 260
Format Description . 261
Environment . 262

$SCAN – Scan Initialization Parameters 262
Format Description . 263
Return Codes . 265
Environment . 266

$SCANB – Backup Storage for a Scan 266
Format Description . 266
Environment . 267

$SCANCOM – Call the $SCAN Facility Comment Service Routine 267
Format Description . 267
Return Codes . 267
Environment . 268

$SCAND – Call the $SCAN Facility Display Service Routine. 268
Format Description . 268
Environment . 269

$SCANDIA – $SCAN Diagnostic Message Service 269
Format Description . 269
Environment . 269

$SCANTAB – Scan Table . 270
Format Description . 270
Environment . 284

$SDUMP – Take a SDUMP of Storage. 284
Format Description . 284
Environment . 285

$SEAS – Security Authorization Services 285
Format Description . 285
Return Codes . 288
Usage Notes . 288
Environment . 288

$SEPPDIR – Create a User Peripheral Data Information Record (PDIR) . . . 289
Format Description . 289

Contents xiii

Environment . 289
$SETAFF – Set Affinity . 289

Format Description . 290
Environment . 291
Examples . 292

$SETIDAW – Set Indirect Data Access Word (IDAW) 292
Format Description . 292
Environment . 293

$SETRP – Set Recovery Processing Options 293
Format Description . 293
Environment . 293

$SJBFIND – Locate a Subsystem Job Block (SJB) 293
Format Description . 294
Return Codes . 294
Programming Requirement 294
Environment . 294

$SJBLOCK – Lock a Specific Subsystem Job Block (SJB) 295
Format Description . 295
Return Codes . 295
Environment . 295

$SJBRQ – Requeue a Specific Subsystem Job Block (SJB) 295
Format Description . 295
Return Codes . 296
Environment . 296

$SSIBEGN – Begin a Subsystem Interface (SSI) Function 296
Format Description . 296
Environment . 297

$SSIEND – End a Subsystem Interface (SSI) Function. 297
Format Description . 297
Environment . 298

$STCK – Call the $STCK Service Routine 298
Format Description . 298
Environment . 298

$STIMER – Set Interval Timer 298
Format Description . 298
Environment . 299

$STMTLOG – Log an Initialization Statement 299
Format Description . 299
Environment . 300

$STORE – Store Registers in the Current Processor Save Area 300
Format Description . 300
Environment . 301

$SUBIT – Initiate Subtask Queueing 301
Format Description . 301
Return Codes . 303
Environment . 303

$SYMREC – Create and Issue a Symptom Record 303
Format Description . 304
Return Codes . 304
Environment . 304

$SYMTAB – Create a Symptom Record Table 304
Format Description . 305
Environment . 308

$TIDTAB – Generate the Trace ID Table DSECT 308
Format Description . 308
Environment . 308

xiv z/OS V1R4.0 JES2 Macros

$TRACE – Trace a JES2 Activity 309
Format Description . 309
Environment . 311

$TRACK – Acquire a Direct-Access Track Address 311
Format Description . 311
Return Codes . 312
Environment . 312

$TTIMER – Test Interval Timer 312
Format Description . 312
Environment . 313

$VERIFY – Verify a Control Block 313
Format Description . 313
Return Codes . 314
Environment . 314

$VERTAB – Build the Inline Verification Tables 314
Format Description . 314
Environment . 315

$VFL – Variable Field Length Instruction Operation 315
Format Description . 315
Environment . 316

$WAIT – Wait for a JES2 Event 316
Format Description . 317
Environment . 320

$WSSETUP – Set Values Required for Work Selection. 320
Format Description . 320
Environment . 321

$WSTAB – Map and Generate the Work Selection Table Entries 321
Format Description . 321
Environment . 326

$WTO – JES2 Write to Operator 326
Format Description – Standard Form 327
Format Description – Execution Form 327
Format Description – List Form 328
Environment . 334

$XECBSRV – Interface for Extended Event Control Block (XECB) Services 334
Format Description . 334
Environment . 335

$XMPOST – POST Task in Another Address Space 335
Format Description . 335
Environment . 336

Appendix A. Using JES2 Table Pairs 337
What Are JES2 Table Pairs? 337
JES2 Table Pairs Versus JES2 Exits 337
Concepts . 338

Master Control Table . 342
General Table Coding Conventions 342

Dynamic Tables Versus Installation Tables 342
Examples of Table Pairs . 343
Processor Control Elements (PCE) Tables 343

PCE Control Blocks and Macros 344
A JES2 PCE Table . 346
An Installation PCE Table 347
A Dynamic PCE Table . 347
Coding the Other Pieces . 349

Daughter Task Element (DTE) Tables 350

Contents xv

||

DTE Control Blocks and Macros 350
A JES2 DTE Table . 351
An Installation DTE Table 352
A Dynamic DTE Table . 352
Coding the Other Pieces . 353

Work Selection (WS) Tables 354
WS Control Blocks and Macros 354
A JES2 WS Table . 354
An Installation WS Table . 355
A Dynamic WS Table . 355
Coding the Other Pieces . 357

Trace Identifiers (TID) Tables 357
TID Control Blocks and Macros 357
A JES2 TID Table . 358
An Installation TID Table . 359
A Dynamic TID Table . 359
Coding the Other Pieces . 359

Creating a Trace Table Using the $TRACE Macro 360
Block Extension Reuse Table (BERT) Tables 361

BERT Control Blocks and MACROS 361
A JES2 BERT Table . 361
An Installation BERT Table 362
A Dynamic BERT Table . 362
Coding the Other Pieces . 363

JES2 $SCAN Facility . 364
$SCAN-Related Control Blocks 364
Implementing $SCAN Tables 365
Examples of $SCAN Tables. 370

Appendix B. Table Pairs Coding Example 373
$USERCBS - Generates User Control Blocks 373
$SCYWORK - Processor Work Area 374
$SCDWORK - Subtask Work Area 375
$UCT - User Communication Table 375
EXIT 0 - Initialization . 377
User Extension Code and Tables 382

USCTPCE - INITIAL ENTRY POINT 384
USCTDTE - SECURITY SUBTASK, INITIAL ENTRY POINT 386
USCTDTE - SECURITY SUBTASK, MAIN PROCESSING 388
USCTDTE - SECURITY SUBTASK, TERMINATION 389
TROUTE255 - TRACING ROUTINE FOR SAF CALL 389
WSTRKGRP - WORK SELECTION ROUTINE 391
TABLES . 392

Appendix C. Miscellaneous Facilities Support 395
Generalized JES2 Dispatcher Support 395
Data Space Usage . 395

$ARMODE . 395
$DSPSERV . 395

General Purpose Subtasking Facility 396
Using the General Purpose Subtasking Facility 396

Invoking the Security Authorization Facility (SAF) 397
Using $SEAS to invoke SAF 397

Appendix D. Accessibility . 403
Using assistive technologies 403

xvi z/OS V1R4.0 JES2 Macros

Keyboard navigation of the user interface. 403

Notices . 405
Programming Interface Information 406
Trademarks. 407

Glossary . 409

Index . 423

Contents xvii

xviii z/OS V1R4.0 JES2 Macros

Figures

1. Determine the Amount of Spool Space Used by $JCTX Extensions 12
2. Table Pairs: A Diagrammatic View . 339
3. Common PCE Area Structure. 344
4. PCE Tables - Save Area Chaining . 346
5. The JES2 PCE Table . 347
6. Example of an Installation PCE Table . 347
7. Example of a Dynamic PCE Table . 348
8. The JES2 DTE Table . 352
9. Example of An Installation DTE Table . 352

10. Example of a Dynamic DTE Table . 353
11. The JES2 WS Table . 355
12. Example of an Installation WS Table . 355
13. Example of a Dynamic WS Table . 356
14. Trace Table Structure. 358
15. The JES2 TID Table . 359
16. Example of an Installation TID Table . 359
17. Example of a Dynamic TID Table . 359
18. The JES2 BERT Table . 362
19. Example of an Installation BERT Table . 362
20. Example of a Dynamic BERT Table . 362
21. Three Examples of $SCANTAB Tables . 371
22. Invoking SAF. 398
23. Invoking SAF from Time-critical Environments. 400

© Copyright IBM Corp. 1988, 2002 xix

xx z/OS V1R4.0 JES2 Macros

Tables

1. Syntax examples . 3
2. JES2 Macro Selection Table. 10
3. Summary of $#JWEL Parameter Requirements and Restrictions 40
4. $DOGBERT Parameter Table (1 of 2) . 107
5. $DOGBERT Parameter Table (2 of 2) . 108
6. MVS DSECTIDs That Can Be Specified on $MODULE 199
7. JES2 DSECTIDs That Can Be Specified on $MODULE 200
8. $QJQE Standard Queue Head Names . 244
9. JES2 Reserved Master Control Table Names . 366

© Copyright IBM Corp. 1988, 2002 xxi

xxii z/OS V1R4.0 JES2 Macros

About This Document

This document supports z/OS (5694-A01) and z/OS.e(5655-G52).

This document provides information about the use and syntax of JES2 executable
macro instructions.

Who Should Use This Document
This document is intended for JES2 system programmers or for anyone responsible
for customizing JES2.

Where to Find More Information
This document references other publications for further details about specific topics.
The following table lists these publications, the abbreviated forms of their titles used
throughout this document, and their order numbers that are not listed in z/OS
Information Roadmap. Refer to that document for all z/OS publications.

Most licensed documents were declassified in OS/390 V2R4 and are now included
on the OS/390 Online Library Collection, SK2T-6700. The remaining licensed
documents appear in unencrypted BookManager softcopy and PDF form on the
OS/390 Licensed Product Library, LK2T-2499.

Short Title Used in This
Document

Title Order Number

CICS/ESA Customization CICS/ESA Customization Guide SC33-1165

Additional Information
Additional information about z/OS elements can be found in the following
documents.

Title Order
Number

Description

z/OS Introduction and
Release Guide

GA22-7502 Describes the contents and benefits of z/OS
as well as the planned packaging and
delivery of this new product.

z/OS and z/OS.e Planning for
Installation

GA22-7504 Contains information that lets users:
v Understand the content of z/OS
v Plan to get z/OS up and running
v Install the code
v Take the appropriate migration actions
v Test the z/OS system

z/OS Information Roadmap SA22-7500 Describes the information associated with
z/OS including z/OS documents and
documents for the participating elements.

z/OS Summary of Message
Changes

SA22-7505 Describes the changes to messages for
individual elements of z/OS.
Note: This document is provided in
softcopy only on the message bookshelf of
the z/OS collection kit.

© Copyright IBM Corp. 1988, 2002 xxiii

Accessing z/OS ™ licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

Determining If a Publication Is Current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xxiv z/OS V1R4.0 JES2 Macros

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. Here’s how to determine if
you are looking at the most current copy of a publication:

1. At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the publication
order number GC28-1747-07, the dash level 07 means that the publication is
more current than previous levels, such as 05 or 04.

2. If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

3. To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk that indicates whether a
publication is new or changed.

About This Document xxv

xxvi z/OS V1R4.0 JES2 Macros

Summary of Changes

Summary of Changes
for SA22-7536-02
z/OS Version 1 Release 4

The document contains information previously presented in SA22-7536-01, which
supports z/OS Version 1 Release 2.

New Information

v Information has been added to indicate this document supports z/OS.e.

Changed Information

v “$$POST – Post a JES2 Event Complete from Another Task” on page 19

v “$$WTO – JES2 Subtask Write to Operator” on page 22

v “$CBIO – Control Block I/O Routine” on page 66

v “Format Description - Execute Form” on page 80

v “$PCETAB – Generate or Map PCE Table Entries” on page 220

v “$POST – Post a JES2 Event Complete” on page 228

v “Format Description” on page 258

v “$TRACE – Trace a JES2 Activity” on page 309

v “$WAIT – Wait for a JES2 Event” on page 316

v “$WTO – JES2 Write to Operator” on page 326

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

Summary of Changes
for SA22-7536-01
z/OS Version 1 Release 2

The document contains information previously presented in SA22-7536-00, which
supports z/OS Version 1 Release 1.

New Information

v Mapping Macros

– $mscwork

– $pad

– $parmwrk

– $reqjid

v $$POST

v $#JOE

v $DILBERT

© Copyright IBM Corp. 1988, 2002 xxvii

v $DOGJQE

v $ERROR

v $GETMAIN

v $JBIDBLD

v $JQEJNUM

v $POST

v $QJQE

v $QLOCNXT

v $WAIT

v $XMPOST

v Appendix A. JES2 Reserved Master Control Table Names

– INCLUDE

– PCE DETAILS=

– PROCLIB

– PROCLIB DD=

– REQJOBID

Changed Information

v $#JOE

v $DOGJQE

v $GETMAIN

v $JBIDBLD

v $PCETERM

v $QJQE

v $TRACE

v $VERIFY

v $XMPOST

xxviii z/OS V1R4.0 JES2 Macros

Chapter 1. Macro Overview

The following JES2 control service programs provide a comprehensive set of
services that aid the JES2 processors in performing their respective tasks in an
efficient manner without burdening the programmer with needless detail. These
services are requested by the processor with JES2 macro instructions. The macros
should not be used in code executing outside the control of the JES2 dispatcher
unless stated in the description of the individual macro instruction.

v General storage management: Provide for the acquisition and release of JES2
buffers

v Work area management services: Provide for the acquisition and return of work
areas that are chained off the processor control element (PCE)

v Virtual page service macros: Provide for the acquisition and release of virtual
pages

v Job queue services: Provide for the alteration of job queues

v Direct-access space services: Provide for the allocation and deallocation of JES2
direct-access storage space

v Unit services: Provide for the acquisition and release of JES2 input/output units

v Input/output services: Provide communication with operating system input/output
supervisor

v Console services: Provide all communication with the operator and manipulate
associated buffer resources

v Time services: Provide for the setting and interrogation of the interval timer

v Synchronization services: Provide synchronization and communication between
JES2 processors, the JES2 dispatcher, and the operating system

v System management facilities services: Provide the processors with an interface
to the MVS SMF routines

v Installation exit services: Provide the $EXIT macro that is used to define exit
points in JES2

v Debug services: Provide facilities for aid in debugging JES2

v Error services: Provide a uniform way of processing detected errors

v Recovery processing aids: Provide macros to aid in recovery processing

v Coding aid services: Provide the JES2 programmer with coding aids not usually
available in the operating system, but useful in coding JES2 routines

v Print/punch output services: Provide macros used to define separator pages and
create peripheral data information records

v Job control table extension services: Provide macros used to add, expand,
locate, and remove extensions to the job control table ($JCT). Installations can
use these extensions to store and transmit job-related information from node to
node.

v Job output services: Provide macros used for job output services

v Initialization services: Provide macros to generate initialization statement (and
parameter) tables and checkpoint information tables

v Verify services: Provide facilities to build control block verification tables to verify
spool-resident control blocks

v Table services: Provide facilities for scanning JES2 initialization statements,
dynamically creating control blocks for DCTs, PCEs, and DTEs.

v Miscellaneous services: Provide miscellaneous services such as modify the
current JESNEWS data set and switch addressing mode

© Copyright IBM Corp. 1988, 2002 1

Some of the above services are provided by inline code expansion wherever the
macro instruction is used. The remaining services are provided by routines that are
integral parts of the control service programs. At execution time, the macro
expansion passes information to the control program routine to specify the exact
nature of the service to be performed. This information is broken down into
parameters and, usually, is passed to the routine through general purpose registers
called parameter registers.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that
comprise a command statement. They are read from left to right and from top to
bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol Definition

ÊÊ─── Indicates the beginning of the syntax diagram.

───Ê Indicates that the syntax diagram is continued to the next line.

Ê─── Indicates that the syntax is continued from the previous line.

───ÊÍ Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

v Variables - variables are italicized, appear in lowercase and represent the name
of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or
operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal
(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to
show greater detail.

v Separators - a separator separates keywords, variables or operators. For
example, a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

2 z/OS V1R4.0 JES2 Macros

Default Default items are displayed above the main path of the horizontal
line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

ÊÊ KEYWORD required_item ÊÍ

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

ÊÊ KEYWORD required_choice1
required_choice2

ÊÍ

Optional item.

Optional items appear below the main path of the
horizontal line.

ÊÊ KEYWORD
optional_item

ÊÍ

Optional choice.

A optional choice (two or more items) appear in a vertical
stack below the main path of the horizontal line. You may
choose one of the items in the stack.

ÊÊ KEYWORD
optional_choice1
optional_choice2

ÊÍ

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or optional)
appear on (required) or below (optional) the main path of
the horizontal line. The following example displays a
default with optional items.

ÊÊ
default_choice1

KEYWORD
optional_choice2
optional_choice3

ÊÍ

Variable.

Variables appear in lowercase italics. They represent
names or values.

ÊÊ KEYWORD variable ÊÍ

Chapter 1. Macro Overview 3

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

An arrow returning to the left above a group of repeatable
items indicates that one of the items can be selected, or a
single item can be repeated.

ÊÊ »KEYWORD repeatable_item ÊÍ

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

ÊÊ KEYWORD fragment ÊÍ

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

Macro Expansion
The macro expansion can contain load instructions (LA, L, LH, etc.) that load
parameters in parameter registers, and it can contain instructions (LR,...) that load
parameter registers from registers loaded by the processor. The processor can also
load parameters directly. Registers 1 and 0 are generally used as parameter
registers.

Each parameter resulting from the expansion of a macro instruction is either an
address or a value. An address parameter is a standard 31-bit address. Any
exception to this rule will be stated in the individual macro instruction description.

An address parameter is always an effective address. The control service program
is never given a 16-bit or 20-bit explicit address of the form D(B) or D(X,B) and then
required to form an effective address. When an effective address is to be resolved,
it is formed either by the macro expansion or before the macro instruction is issued.

A value parameter is a field of data other than an address. It is of variable length
and is usually in the rightmost bits of a parameter register. The value parameter
always has a binary format. The leftmost unused bits in the parameter register
should contain all zeros. Any exception to this rule is stated in the individual macro
instruction description.

Certain value parameters can be placed in a register along with another parameter,
which can either be an address or a value parameter. In this case, a value
parameter is in other than the rightmost bits. Two or more parameters in the same
register are called packed parameters.

Parameters are specified by operands in the macro instruction. An address
parameter can result from a relocatable expression or, in certain macro instructions,
from an implicit or explicit address. A value parameter can result from an absolute
expression or a specific character string. Address and value parameters can both
be specified by operands written as an absolute expression enclosed in
parentheses. This operand form is called register notation. The value of the
expression designates a register into which the specified parameter must be loaded

4 z/OS V1R4.0 JES2 Macros

by the processor before the macro instruction is issued. The contents of this
register are then placed in a parameter register by the macro expansion.

Specify JES2 Macro Instructions
The programmer codes an operand on a JES2 macro instruction to specify the
exact nature of the service to be performed. Operands are of two types, positional
operands and keyword operands.

A positional operand is written as a string of characters. This character string can
be an expression, an implied or explicit address, or some special operand form
allowed in a particular macro instruction. Positional operands must be written in a
specific order. If a positional operand is omitted and another positional operand is
written to the right of it, the comma that would normally have preceded the omitted
operand must be written. This comma should be written only if followed by a
positional operand; it need not be written if followed by a keyword operand or a
blank.

In the following examples, EX1 has three positional operands. In EX2, the second
of three positional operands is omitted but must still be delimited by commas. In
EX3, the first and third operands are omitted; no comma need be written to the right
of the second operand.
A keyword operand is written as a keyword immediately followed by an equal sign

and an optional value.

A keyword consists of one through seven letters and digits, the first of which must
be a letter. It must be written exactly as shown in the individual macro instruction
description.

An optional value is written as a character string in the same way as a positional
operand.

Keyword operands can be written in any order, but they must be written to the right
of any positional operands in the macro instruction.

In the following examples, EX1 shows two keyword operands. EX2 shows the
keyword operands written in a different order to the right of any positional operands.
In EX3, the second and third positional operands are omitted; they need not be
delimited by commas, because they are not followed by any positional operands.
Certain operands are required in a macro instruction if the macro instruction is to

make a meaningful request for a service. Other operands are optional and can be
omitted. Whether an operand is required or optional is indicated in the individual
macro instruction description.

EX1 $EXAMP A,B,C
EX2 $EXAMP A,,C
EX3 $EXAMP ,B

EX1 $EXAMP KW1=X,KW2=Y
EX2 $EXAMP A,B,C,KW2=Y,KW1=X
EX3 $EXAMP A,KW1=X,KW2=Y

Chapter 1. Macro Overview 5

Basic Notation Used To Describe Macro Instructions
JES2 macro instructions are presented in this section using macro instruction
descriptions, each of which contains an illustration of the macro instruction format.
This illustration is called a format description. An example of a format description is
as follows:

Operand representations in format descriptions contain the following elements:

v An operand name, which is a single mnemonic word used to refer to the
operand. For a keyword operand, the keyword is the name. For a positional
operand, the name is merely a reference. In the above format description,
name1, name2, KEYWD1, and KEYWD2 are operand names.

v A value mnemonic used to indicate how the operand should be written if it is not
written as a coded value. For example, addr is a value mnemonic that specifies
that an operand or optional value is to be written as either a relocatable
expression or register notation.

v A coded value, which is a character string that is to be written exactly as it is
shown. For example, RDR is a coded value.

v Parentheses are always required around a list of specifications or values
specified for a keyword with multiple values, such as KEYWD3=. These
parentheses are optional if only one value is coded or the keyword is allowed to
default.

The format description also specifies when single operands and combinations of
operands should be written. This information is indicated by notational elements
called metasymbols. For example, in the preceding format description, the brackets
around symbol indicate that a symbol in this field is optional.

Operand Representation
Positional operands are represented in format descriptions in one of two ways:

v By a three-part structure consisting of an operand name, a hyphen, and a value
mnemonic, for example: name1-addr

v By a three-part structure consisting of an operand name, a hyphen, and a coded
value, for example: name1-RDR.

Keyword operands are represented in format descriptions in one of two ways:

v By a three-part structure consisting of a keyword, an equal sign, and a value
mnemonic, for example: KEYWD1=addr

v By a three-part structure consisting of a keyword, an equal sign, and a coded
value, for example: KEYWD1=RDR.

The most significant characteristic of an operand representation is whether a value
mnemonic or coded value is used; these two cases are discussed next.

Operands with Value Mnemonics
When a keyword operand is represented by:
KEYWORD=value mnemonic

the programmer first writes the keyword and the equal sign and then a value of one
of the forms specified by the value mnemonic.

[symbol] $EXAMP name1-value mnemonic,name2-CODED VALUE, c
KEYWD1=value mnemonic, c
KEYWD2=CODED VALUE, c
KEYWD3=(label,value)

6 z/OS V1R4.0 JES2 Macros

When a positional operand is represented by:
name-value mnemonic

the programmer writes only a value of one of the forms specified by the value
mnemonic. The operand name is merely a means of referring to the operand in the
format description; the hyphen simply separates the name from the value
mnemonic. Neither is written.

The following general rule applies to the interpretation of operand representations in
a format description; anything shown in uppercase letters must be written exactly as
shown; anything shown in lowercase letters is to be replaced with a value provided
by the programmer. Thus, for a keyword operand, the keyword and equal sign are
written as shown, and the value mnemonic is replaced. For a positional operand,
the entire representation is replaced.

The value mnemonics listed below specify most of the allowable operand forms that
can be written in JES2 macro instructions. Other value mnemonics, which are rarely
used, are defined in individual macro instruction descriptions.

v symbol: The operand can be written as a symbol.

v relexp: The operand can be written as a relocatable expression.

v addr: The operand can be written as (1) a relocatable expression or (2) register
notation designating a register that contains an address. The designated register
must be one of the registers 2 through 12, unless special notation is used.

v addrx: The operand can be written as (1) an indexed or non-indexed implied or
explicit address or (2) register notation designating a register that contains an
address. An explicit address must be written in the RX form of an assembler
language instruction.

v adval: The operand can be written as (1) an indexed or non-indexed implied or
explicit address or (2) register notation designating a register that contains a
value. An explicit address must be written in the RX form of an assembler
language instruction.

v absexp: The operand can be written as an absolute expression.

v rx-addr: The address can be written as one of the following:

– A register that contains the value

– An expression that can be used as the second operand of a Load Address
(LA) instruction.

v A-type address: The address can be written as any address that is valid in an
A-type address constant.

v value: The operand can be written as (1) an absolute expression or (2) register
notation designating a register that contains a value.

v text: The operand can be written as a character constant as in a DC data
definition instruction. The format description shows explicitly if the character
constant is to be enclosed in apostrophes.

v code: The operand can be written as one of a large set of coded values; these
values are defined in the macro instruction description.

Coded Value Operands
Operands that are not represented in format descriptions by value mnemonics are
represented by one or more uppercase character strings that show exactly how the
operand should be written. These character strings are called coded values, and
the operands for which they are written are called coded value operands.

Chapter 1. Macro Overview 7

A coded value operand results in either a specific value parameter or a specific
sequence of executable instructions.

If a positional operand can be written as any one of two or more coded values, all
possible coded values are listed in a format description and are separated by
vertical strokes indicating that only one of the values is to be used.

Metasymbols
Metasymbols are symbols that convey information about how to code. Metasymbols
denote operands are optional or required when coding macro instructions; they are
never written in the coded macro. They show the programmer how and when an
operand should be written. The metasymbols used in this section are:

Metasymbol Meaning and Use

{ } Braces — denote grouping of alternative operands, one of which
must be selected. For example:
{YES|NO}

[] Brackets — denote optional operands. Anything enclosed within
brackets can be either omitted or written once in the macro
instruction. For example:
[USE=code]

In the example above, the keyword and its operand can either be
written or omitted; its use is optional.

__ Underscore — denotes the JES2 default if the particular keyword is
not coded. For example:
WAIT={YES|NO}

In the example above, YES is the default. To override the default,
you must code WAIT=NO. The WAIT= keyword is therefore
optional; any keyword with a default is enclosed within brackets in
the syntax diagrams throughout this chapter, similar to the next
example.

Metasymbols are nested in almost any combination throughout the macro
instruction descriptions that follow. Whether any set of keywords and operands are
optional or required is determined by the outermost set of metasymbols. For
example:
[,WAIT={YES|NO}]

The entire keyword/operand statement is optional, but if you do code the WAIT=
keyword, the only valid options are either WAIT=YES or WAIT=NO.

Uppercase operands must be coded as written in the syntax diagrams. Also,
punctuation such as commas, parentheses, and single quotes are not metasymbols;
if present in the syntax diagrams they must be coded. Operands in lowercase are
not to be coded as written; they denote variables that are explained in the
description of the particular keyword for the macro instruction.

8 z/OS V1R4.0 JES2 Macros

Special Register Notation
Many JES2 macro instruction keywords allow you to code a register as a valid
specification. If you do code a register (for example, R0 or R15), be certain to
enclose the symbol representing that register in parenthesis. A symbol enclosed in
parenthesis is called register notation (for example, (R0) or (R1)).

If an operand of a JES2 macro instruction is written using register notation, the
resulting macro expansion loads the parameter contained in the designated register
into either parameter register 1 or parameter register 0.

For example, if an operand is written as (R15) and if the corresponding parameter
is to be passed to the control program in register 1, the macro expansion would
contain the instruction:
LR R1,R15

Before macro expansion, the processor can load parameter registers; this is called
pre-loading . When preloading a parameter register, use the JES2 equated symbols
for register 0 or 1 (that is, R1 or R0) to indicate to the macro which registers
contain values to be passed. If you do not use the JES2 equated symbols, you will
cause the generation of an extra instruction.

For example, RONE, an absolute symbol equated to R1, should not be specified on
the macro statement if the register required is R1. The macro will not recognize
RONE as register 1 and will attempt to load the parameter register R1 from the
RONE specification with the following redundant instruction:
LR R1,RONE

The format description shows whether special register notation can be used, and for
which operands. This is demonstrated by the following example:

Both operands can be written in the addrx form, and therefore can be written using
register notation. Ordinary register notation indicates that the parameter register
should be loaded from the designated register by the macro expansion. The format
description also shows that the abc operand can be written as (R1), and the def
operand can be written as (R0). If either of these special notations is used, the
processor must have loaded the designated parameter register before the execution
of the macro instruction.

Register Stability
Usually the following registers cannot be considered stable across a JES2 macro
expansion:

R14
R15
R0
R1

Registers 2-13 are not affected by JES2 macros, unless it is specifically stated in
the individual macro instruction description.

[symbol] $EXAMP {abc-addrx} , {def-addrx}
{(R1) } {(R0) }

Chapter 1. Macro Overview 9

Macro Selection Table
Table 2 summarizes the available JES2 programmer macros by the function they
perform. Following Table 2 are the individual macro’s descriptions, presented in
alphabetical order.

Table 2. JES2 Macro Selection Table

JES2 Service JES2 Programmer Macros

Checkpoint Services $BERTTAB $CHECK $CKPT $DILBERT
$DOGBERT $DOGWSCQ $PAIR

Coding Aid Services $CALL $CFSEL $ENTRY $MODEND
$MODULE $PATCHSP $QUEUE
$RESTORE $RETURN $SAVE $STORE
$SUBIT $XECBSRV $RETSAVE $VFL

Console Services $CWTO $DOM $FRECMB $GETCMB
$LOGMSG $MID $MSG $RDIRTAB $WTO
$$WTO $$WTOR

Debug Services $SDUMP $TRACE

Direct-Access Space Services $BLDTGB $PURGE $TRACK

Dynamic Service Access Services $DCBDYN $DCTDYN $DESTDYN
$DTEDYN $PCEDYN

Error Services $DISTERR $ERROR $IOERROR $SYMREC
$SYMTAB

Functional Subsystem Interface Services $FSILINK

General Storage Management $BFRBLD $BLDQC $CPOOL $DSPSERV
$FRECEL $FREEBUF $FREMAIN $FREQC
$GETBLK $GETBUF $GETCEL $GETHP
$GETMAIN $GETQC $QCTGEN $RETBLK

Initialization Services $STMTLOG

Input Output Services $CBIO $EXCP $EXTP

Installation Exit Services $EXIT $ENVIRON $MODCHK $MODELET
$MODLOAD

Job Control Table Extension Services $JCTXADD $JCTXEXP $JCTXGET
$JCTXREM

Job Output Services $#ADD $#ALCHK $#BLD $#BUSY $#CAN
$#CHK $#DISPRO $#GET $#GETHDJ
$#JWEL $#JOE $#MOD $#POST $#PUT
$#REM $#REP $#TJEV

Job Queue Services $DOGJQE $JCAN $QADD $QBUSY $QGET
$QJIX $QJQE $QLOC $QLOCNXT $QMOD
$QPUT $QREM

Miscellaneous $ALET $ALESERV $AMODE $ARMODE
$BLDMSG $DEST $DOGCAT $DVIDBLD
$GETADDR $GETASCB $GETRTN
$JBIDBLD $JQEJNUM $MVCL $PCETERM
$SETIDAW

Networking Services $NATGET $NHDADD $NHDEXP $NHDGET
$NHDREM $NHDXMT

Peripheral Data Definition Block Services
and Input/Output Table Services

$IOTBLD $PDBBLD $PDBFIND

Print/Punch Output Services $PBLOCK $PRPUT $SEPPDIR

10 z/OS V1R4.0 JES2 Macros

Table 2. JES2 Macro Selection Table (continued)

JES2 Service JES2 Programmer Macros

Recovery Processing Services $ESTAE $SETRP

Scan Services $SCAN $SCANB $SCANCOM $SCAND
$SCANDIA $SCANTAB

Security Services $SEAS

Subsystem Interface Services $SSIBEGN $SSIEND

Subsystem Job Block Services $SJBFIND $SJBLOCK $SJBRQ

Synchronization Services $ACTIVE $DORMANT $FRELOK $GETLOK
$POSTQ $$POST $POST $QSUSE $WAIT
$XMPOST

System Management Facility Services $GETSMFB $QUESMFB

Table Pair Services $DCTTAB $DTETAB $GETABLE $PCETAB
$TIDTAB $WSTAB

Time Services $STCK $STIMER $TTIMER

Unit Services $ALLOC $FREUCBS $FREUNIT
$GETUCBS $GETUNIT

Verify Services $VERIFY $VERTAB

Virtual Page Services $PGSRVC

Work Area Management Services $GETWORK $RETWORK

Work Selection $WSSETUP

Using the $JCTX Macro Extension Service
The $JCTX macro extension service allows installations to create extensions to the
job control table ($JCT) control block for storing and transmitting job-related
information. This service replaces the use of the $NHD control block to retain
job-related information on spool. The $JCTX macro extension service is comprised
of the following macros:

Macro Use

$JCTXADD
Creates an extension to the $JCT based on an installation-specified length
and unique identifier.

$JCTXEXP
Expands an extension to the $JCT based on an installation-specified length
and unique identifier.

$JCTXGET
Locates an extension to the $JCT based on an installation-specified unique
identifier.

$JCTXREM
Removes an extension to the $JCT based on an installation-specified
unique identifier.

Determining the Amount of Spool Space Used by $JCT Extensions
The length of a $JCT extension is limited by the size of the $JCT control block and
an installation’s spool buffer size. IBM provides 512 bytes in the spool buffer, in
addition to anything beyond the smallest buffer size available (1944 bytes). The

Chapter 1. Macro Overview 11

buffer size is specified on the BUFDEF= parameter of the SPOOLDEF initialization
statement. Use the algorithm in the following figure to determine how much space is
used by $JCT control block extensions within a $JCT control block:

The following assembler instructions use this formula:
LH R1,$BUFSIZE Get spool buffer size
SH R1,=Y(JCTFEND-JCTSTART) Subtract size of fixed portion

of the JCT
SH R1,JCTRXLEN Subtract amount of unused space

To determine the amount of space that remains in this $JCT control block for
extensions, specify:

LH R1,JCTRXLEN

Examples of the $JCTX Macro Extension Service
The following examples illustrate how to use this service to provide job-related
information. These examples emphasize how installations can carry the information
with the job from node to node across a network and reference the information
when needed. Note that these are two simple examples of how the $JCTX macro
extension service can be used at your installation.

Example 1: Transmitting Separator Notes Through $JCT Extensions
This topic provides an overview of the example provided in the sample exit
HASXJECL, which is shipped in SYS1.VnRnMn.SHASSAMP. $JCTX extensions to
the $JCT control block are created to store one-line notes that appear on the
separator page between each job printed. These one-line separator page notes
enter the local node through an installation-defined JES2 control statement
(/*SEPNOTE) with the following syntax:
/*SEPNOTE text

where ‘text’ is what the submitter specifies in the job stream to appear on the
separator page. Note that this is not an IBM-defined JES2 control statement; it is an
example.

If the printer receiving the /*SEPNOTE statement from the network job header does
not print a separator page (SEP=NO on the PRT(nnnn) initialization statement), the
notes do not print.

To provide this capability across the network, all nodes must provide the same four
exits. However, if you code exits 1 and 4 at the local node only, any jobs entering
the system or printed at this node contain the one-line separator note.

The following provides an overview of this function:

1. Before the individual exit points, define the $JCTX extension values and the
NJE header values for the /*SEPNOTE statements.

$BUFSIZE
(JCT buffer) −

JCTFEND−JCTSTART
(Fixed $JCT) −

JCTRXLEN
(space left) = Space used

by JCT
extensions
in this $JCT

Figure 1. Determine the Amount of Spool Space Used by $JCTX Extensions

12 z/OS V1R4.0 JES2 Macros

2. Exit 4 allows the reader to receive each extension (the /*SEPNOTE JES2
control statement) and add them to the $JCT control block in Exit 4

3. Exit 46 allows the job or SYSOUT transmitter to move each extension from the
$JCT control block into a network job header for transmission to another node
in Exit 46

4. Exit 47 allows the job or SYSOUT receiver to move each extension from the
network job header into the $JCT at the receiving node in Exit 47

5. Exit 1 allows a printer with appropriate work selection values to print the
one-line separator page notes.

For a complete understanding of the exit, refer to the comments in sample exit
HASXJECL.

Example 2: Using $JCTX Extensions To Maintain Spool Compatibility
You can add to an extension while maintaining spool compatibility so that the new
and old versions of the $JCT control block co-exist in the same multi-access spool
(MAS) configuration.

By modifying the $JCTX extensions you are, in effect, modifying the $JCT control
block without having to cold start JES2. If you add fields to the $JCT data area after
the JCTFEND label rather than before it, these modified fields will not be
overwritten.

IBM recommends that you convert all $JCT control block modifications to use
$JCTX extensions. If you add fields to the $JCT data area directly rather than use
the $JCTX macro extension service, your extensions can be overwritten by other
products using the $JCTX macro extension service.

In the user control block DSECT ($USERCBS macro):

1. Begin by defining a new field to the installation-defined ″accounting″ extension
at the end of the extension so the offsets of other fields do not change.

2. Then, define a new field to the installation-defined section of the network job
header at the end of the extension field so the offsets of these fields do not
change.

...
JCTX DSECT Set to JCTX DSECT

ORG JCXORG Set location counter to the correct origin
JCXXACCT DS CL20 Installation account information
JCXXACT2 DS CL8 Additional accounting information
JCXXLEN1 EQU *-JCTX Length of the extension...

...
NJHU DSECT Installation section

ORG NJHUCODE+L NJHUCODE
NJHU$MD1 EQU B’11101101’ Installation account information
NJHUACCT DC CL20 Accounting information
NJHUACT2 DC CL8 Additional accounting information
NJHULEN1 EQU *-NJHU Length of the accounting section...

Chapter 1. Macro Overview 13

Sample Exit 6 for Spool Compatibility
Write an Exit 6 that creates the second extension and ensures that it is long
enough to contain the new 8-byte field of additional accounting information. This
8-byte field was added during job conversion.

Note: If the section already exists and is long enough, JES2 puts the address
there.

1. Use the $JCTXGET macro to locate the extension to the $JCT control block that
had been added earlier:

2. Determine the address of the extension and identify the register (in this case,
base register 5) as the beginning of the extension address.

3. If JES2 finds the extension, use the $JCTXEXP macro to expand the extension
so it can contain the new 8-byte accounting field. Then move the accounting
field from the $JCTX into the network job header, as shown in the previous
step:

4. If JES2 did not find the extension, use the $JCTXADD macro to add the entire
extension. Note that the ‘JCXXLEN1’ LENGTH= value allows you to include the
8-byte accounting field.

5. Once you have returned from Exit 6, provide the label (X6MOVE) where
successful return codes should branch so the expansion is moved into the

...
$JCTXGET JCT=JCT, Macro to locate the

TYPE=’ACCT’, $JCTX extension to the
MOD=1, $JCT control block.
NOTFOUND=X6ADDIT, Add the extension if

it is not found
ERRET=X6SKIP Return to caller

for all other errors...

...
$JCTXEXP JCT=JCT, Expand the extension

TYPE=’ACCT’,
MOD=1,
LENGTH=JCXXLEN1,
NOSPACE=X6SKIP, Return to the caller

if there is no room for
the expansion

ERRET=X6SKIP, Return to the caller
for all other errors

OKRET=X6MOVE Move the extension into
the network header...

...
X6ADDIT $JCTXADD JCT=JCT, Add 8-byte field onto

TYPE=’ACCT’, the existing extension
MOD=1,
LENGTH=JCXXLEN1,
NOSPACE=X6SKIP, Return to caller

if there is no room for
the expansion

ERRET=X6SKIP Return to caller
for all other errors...

14 z/OS V1R4.0 JES2 Macros

network header, and the label (X6SKIP) where unsuccessful return codes
should branch so they can return to the caller.

...
X6MOVE MVC ACTINFO,JCXXACT2 Move the expansion

into the network header...
X6SKIP DS OH Return to caller...

Chapter 1. Macro Overview 15

16 z/OS V1R4.0 JES2 Macros

Chapter 2. Macro Names List

The macros identified in this chapter are provided as Product-sensitive
programming interfaces for customers by JES2. Some macros have keywords,
fields, or parameters that are designed for IBM internal use only. Such information
documents no programming interfaces for use by customers in writing programs
that request or receive the services of JES2. Please refer to the appropriate JES2
documentation for the correct classification and use of keywords, fields, and
parameters for macros.

Attention: Do not use as programming interfaces any JES2 macros other than
those identified in this chapter.

Executable Macros

$$POST
$$WTO
$$WTOR
$#ADD
$#ALCHK
$#BLD
$#BUSY
$#CAN
$#CHK
$#DISPRO
$#GET
$#GETHDJ
$#JOE
$#JWEL
$#MOD
$#POST
$#PUT
$#REM
$#REP
$#TJEV
$ACTIVE
$ALESERV
$ALLOC
$AMODE
$ARMODE
$BERTTAB
$BFRBLD
$BLDMSG
$BLDQC
$BLDTGB
$CALL
$CBIO
$CHECK
$CKPT
$COUNT
$CPOOL

$CWTO
$DCBDYN
$DCTDYN
$DCTTAB
$DEST
$DESTDYN
$DILBERT
$DISTERR
$DOGBERT
$DOGCAT
$DOGJQE
$DOGWSCQ
$DOM
$DORMANT
$DSPSERV
$DTEDYN
$DTETAB
$DVIDBLD
$ENTRY
$ENVIRON
$ERROR
$ESTAE
$EXCP
$EXIT
$EXTP
$FREBUF
$FRECEL
$FRECMB
$FRELOK
$FREMAIN
$FREQC
$FREUCBS
$FREUNIT
$FSILINK
$GETABLE
$GETADDR
$GETASCB

$GETBLK
$GETBUF
$GETCEL
$GETCMB
$GETHP
$GETLOK
$GETMAIN
$GETQC
$GETRTN
$GETSMFB
$GETUCBS
$GETUNIT
$GETWORK
$IOERROR
$IOTBLD
$JBIDBLD
$JCAN
$JCTXADD
$JCTXEXP
$JCTXGET
$JCTXREM
$JQEJNUM
$LOGMSG
$MID
$MODCHKT
$MODELET
$MODEND
$MODLOAD
$MODULE
$MSG
$MVCL
$NATGET
$NHDADD
$NHDEXP
$NHDGET
$NHDREM
$NHDXMT

$PATCHSP
$PAIR
$PBLOCK
$PCEDYN
$PCETAB
$PCETERM
$PDBBLD
$PDBFIND
$PGSRVC
$POST
$POSTQ
$PRPUT
$PURGE
$QADD
$QBUSY
$QCTGEN
$QGET
$QJIX
$QJQE
$QLOC
$QLOCNXT
$QMOD
$QPUT
$QREM
$QSUSE
$QUESMFB
$QUEUE
$RDIRTAB
$RESTORE
$RETBLK
$RETSAVE
$RETURN
$RETWORK
$SAVE
$SCAN
$SCANB
$SCANCOM
$SCAND

$SCANDIA
$SCANTAB
$SDUMP
$SEAS
$SEPPDIR
$SETAFF
$SETIDAW
$SETRP
$SJBFIND
$SJBLOCK
$SJBRQ
$SSIBGN
$SSIEND
$STCK
$STIMER
$STMTLOG
$STORE
$SUBIT
$SYMREC
$SYMTAB
$TIDTAB
$TRACE
$TRACK
$TTIMER
$VERIFY
$VERTAB
$VFL
$WAIT
$WSSETUP
$WSTAB
$WTO
$XECBXRSV
$XMPOST

© Copyright IBM Corp. 1988, 2002 17

Mapping Macros

$ALINDEX
$APT
$BERTTAB
$BLDMSGL
$BUFFER
$CAT
$CCW
$CHK
$CIRWORK
$CK
$CKPWORK
$CMB
$CNVWORK
$COMWORK
$CPCWORK
$CPEBE
$CPINDEX
$CPMASTR
$CPPWORK
$CPXWORK
$DAS
$DCT
$DCTTAB
$DSCT
$DSWA
$DTE
$DTEACCT
$DTECNV
$DTEIMG
$DTEOFF
$DTESPL
$DTESUBS

$DTEVTAM
$DTEWTO
$ENFWORK
$ERA
$EVT
$FSACB
$FSAXB
$FSSCB
$FSSWORK
$FSSXB
$GGEQU
$HASB
$HASPEQU
$HASPGBL
$HASXB
$HCCT
$HCT
$HFAM
$HFAME
$HFCT
$ICE
$IOT
$JCT
$JCTX
$JIB
$JIBX
$JNT
$JNEW
$JOE
$JOT
$JQE
$KAC

$MCT
$MLMWORK
$MSCWORK
$NAT
$NHD
$NIT
$NJTWORK
$NSACT
$NSRWORK
$NSTWORK
$NTW
$OCR
$OCT
$ODPARM
$OUTWORK
$PAD
$PARMWRK
$PCE
$PCT
$PCTAB
$PDDB
$PIT
$PPPWORK
$PQE
$PRGWORK
$PSV
$QSE
$RAT
$RCPWORK
$RDRWORK
$REQJID
$RESNAM
$SAFINFO
$SCANWA
$SCAT
$SCID

$SDB
$SFRB
$SFRWORK
$SJB
$SJIOB
$SJXB
$SMF
$SPMWORK
$SPNWORK
$SQD
$STCWORK
$SWBIT
$SXADDR
$S35D
$TAB
$TQE
$TRCA
$TRE
$TRX
$USERCBS
$WARMWRK
$WAVE
$WLMD
$WSA
$WSP
$XECB
$XEQWORK
$XFMWORK
$XMAS
$XPL
$XRQ
$ZIP

18 z/OS V1R4.0 JES2 Macros

Chapter 3. JES2 Programmer Macros

$$POST – Post a JES2 Event Complete from Another Task
Use $$POST to post certain specific JES2 processors or resources by setting
indicators that cause JES2 processors to begin executing. $$POST is for use by
routines running in any JES2 environment other than the main task environment.
$$POST is also for use by asynchronous MVS exit routines associated with the
JES2 main task (for example, timer exits and I/O exits).

Format Description

TYPE=
Specifies the resource that is to be posted. You can specify the resource
characters (which appear below) or you can specify register notation (R2-R12).
If you specify register notation, the register must contain a resource number.
The resource numbers range from 0 through 63. See the $HASPEQU mapping
macro in z/OS JES2 Data Areas, Vol 2 $FCLWORK-$OUTWORK for a list of
the resource numbers and their associated definitions.

If you specify resource characters, you must specify one of the following:

ABIT
Waiting for the next dispatcher cycle

ALICE
PCE waiting for incomplete warm start

ALOC
A dynamic allocation has completed

ARMS
Automatic restart manager support services

BUF
A JES2 buffer has been released

CCAN
Cancel JOB/TSU/STC in conversion

CKPT
A JES2 checkpoint write has completed

CKPTP
A checkpoint cycle has completed

CKPTW
A JES2 checkpoint should be written

CMB
A console message buffer has been released

ÊÊ
symbol

$$POST TYPE= type-char
(Rx)

ELMT= addrx
(R1)

SVC
,LINKAGE= BRANCH

SYSTEM

Ê

Ê
,ERRET= label R x ,OKRET= label R x

ÊÍ

© Copyright IBM Corp. 1988, 2002 19

CNVT
A converter has been released

EOM
Post PCEs waiting for End Of Memory events

FSS
A functional subsystem has completed FSS-level processing

GENL
Provides a method of communication from one processor control element
(PCE) to another. It does not provide serialization between the PCEs. You
must ensure the condition of the waiting PCE is satisfied before it is posted.
Frequent use of the GENL resource name will have a severe impact on
your installation’s performance.

HOMOG
PCEs waiting for JESplex version change

HOPE
An output processor has been released

IMAGE
A UCS or FCB image has been loaded

JCMD
A JES2 job queue element has been marked for cancel ($C) or restart ($E)
processing

JOB
A JES2 job queue element has changed status

JOE
A JOE has been released

JOT
A JES2 job output element has changed status

LOCK
A lock has been released

MAIN
Storage is available

MFMT
PCEs waiting for SPOOL mini-format conversion

PCETM
Waiting for resource manager to detach PCE

PSO
A process SYSOUT request has been queued for the JES2 PSO
processor(s)

PURGE
A JES2 job queue element (JQE) has been placed on the purge queue

PURGS
Purge resources from $PURGER have been released

RMWT
Waiting for resource manager to finish processing

RSV
A JES2 RESERVE has been satisfied

$$POST

20 z/OS V1R4.0 JES2 Macros

|
|

SPI
PCEs waiting for SYSOUT API (SAPI) requests

SPIN
A spin data set has been created

SMF
AN SMF buffer has been released

TRACK
A track group from the JES2 spooling data set has been released

UNIT
A device control table has been released

WARM
Warm processor is waiting for work

WSLOK
Warm start lock

XMITJOB
A JES2 job queue element (JQE) has been placed on the $XMIT queue to
be transmitted to another node.

value
An installation-defined dispatcher resource name or number

ELMT=
Specifies the address of the element where the event indicator is to be set.
Symbolic names for these indicator elements are as follows:
v CCTASYNC – Post asynchronous I/O processor
v CCTCKPTP – Post checkpoint processor
v CCTCOMM – Post command processor
v CCTJOB – Post execution processor
v CCTMLLM – Post line manager
v CCTSPOOL – Post spool manager
v CCTTIMER – Post timer processor
v CCTTRPCE – Post trace logger

The corresponding processor control elements are posted by the JES2
dispatcher on recognizing the post elements line in $$POST.

If register notation is used, the designated register must be loaded with the
address of the element before executing this macro. Do not use register 2 for
this address.

ERRET=
Specifies a label to be branched to or a register to be branched on if a non-zero
return code is returned in R15. This parameter is optional.

OKRET=
Specifies a label to be branched to or a register to be branched on if a zero
return code is returned in R15. This parameter is optional.

LINKAGE=SVC|BRANCH|SYSTEM
Specifies the type of linkage JES2 is to use when it issues the MVS POST
macro instruction. The requirements for specifying each type of linkage depend
on from which address space the $$POST is issued.

When the $$POST is issued from the JES2 address space:

Linkage Type Requirements

$$POST

Chapter 3. JES2 Programmer Macros 21

|
|
|

|
|
|

LINKAGE=BRANCH
The $$POST caller must be in primary ASC mode and must
hold the local lock.

LINKAGE=SVC
None

LINKAGE=SYSTEM
The $$POST caller must not hold any locks.

When the $$POST is issued from a non-JES2 address space:

Linkage Type Requirements

LINKAGE=BRANCH
If the $$POST caller holds the local lock, the caller must be in
the home address space. If the $$POST caller does not hold
the local lock, the caller can be in any address space.

LINKAGE=SVC
The $$POST caller must be in task mode and in primary ASC
mode.

LINKAGE=SYSTEM
The $$POST caller must be enabled, unlocked, and in primary
ASC mode.

Notes:

1. The execution of this macro requires registers 0, 1, 2, 11, and 15.

2. This macro instruction should not be used when executing code that runs
under control of the main JES2 task program request block.

3. Either TYPE or ELMT operands must be specified.

Environment
v Subtask, user, and functional subsystem (HASPFSSM).
v WAIT cannot occur.

$$WTO – JES2 Subtask Write to Operator
Use $$WTO to initiate the display of an operator message from a JES2 subtask or
during JES2 initialization or termination. The message is issued via an MVS
execute-form WTO macro after supplying the JES2 command ID character.

$$WTO stores the message text within the message area; therefore, your program
becomes non-reentrant after using this macro. Your program remains reentrant if
the message area is acquired (via $GETMAIN) and refreshed each time the macro
is issued.

$$POST

22 z/OS V1R4.0 JES2 Macros

|

|
|
|

|
|
|
|

Format Description

wto-list
Specifies the address of a list-form MVS WTO message. If TEXT= is also
specified, it is assumed that the list form WTO also specified TEXT=. If TEXT=
was not specified, it is assumed that the list form WTO contains the text of the
message to be issued. If descriptor code 1, 2, 3, or 11 was specified, the
identification number (24 bits, right-justified) is returned in register 1. If a
multi-line WTO was specified, the connect id is returned in register 1.

TEXT=

Option keyword which specifies the address of the text of the operator
message. The address can be in a register (2-12) or be the name of a field.
Use of this keyword implies that the WTO MF=L specified TEXT= and that it
generates an extended WPL.

The address specified by TEXT= will be placed in the WPL pointed to via the
wto-list parameter.

TEXT is the address of a half-word length followed by the message text. The
length does not include the length of the half-word.

A second optional value is the line type for multi-line WTOs. Valid values are C,
L, D, DE, and E. See z/OS MVS IPCS Customizationfor complete descriptions.

CONNECT=
If this is not the first line of a multi-line WTO, specifies the MLWTO connect ID.
Only valid if TEXT= was specified.

AREAID=
Specifies the console area ID. Only valid if TEXT= was specified

MID=
Specifies whether the message has a message id and therefor whether or not
to add the JES2 COMCHAR to the start of the message. Default is YES.

Environment
v Subtask or main task.
v $WAIT cannot occur.

$$WTOR – JES2 Subtask Write to Operator with Reply
Use $$WTOR to initiate the display of an operator message, requiring a reply, from
a JES2 subtask. The message is issued via an MVS execute-form WTOR macro
instruction after supplying the JES2 command ID character.

ÊÊ
symbol

$$WTO wto-list
(R1) YES

,MID= NO

Ê

Ê
,TEXT= message-addrx

(message-addrx ,C) ,CONNECT= conid ,AREAID= area
,L
,D
,DE
,E

ÊÍ

$$WTO

Chapter 3. JES2 Programmer Macros 23

|||||||||||||||||||||||||||||||||||
|

|
|||

|
|

|

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

$$WTOR stores the message text within the message area; therefore, your
program becomes non-reentrant after using this macro. Your program remains
reentrant if the message area is acquired (via $GETMAIN) and refreshed each time
the macro is issued.

Format Description

message
Specifies the address of a list-form MVS WTOR message. If register notation is
used, the address must be loaded into the designated register before execution
of this macro instruction. The identification number (24 bits, right-justified) is
returned in register 1.

Notes:

1. From JES2 subtasks, HASPINIT and HASPTERM, it is the responsibility of
the issuer of this macro instruction to issue a WAIT macro instruction, the
ECB of which will be posted when the operator has replied to the message.

2. From the main task it is the responsibility of the issuer of this macro
instruction to issue a $WAIT with the XECB option.

Environment
v Subtask.
v Main task (during JES2 initialization and termination).
v $WAIT cannot occur.

$#ADD – Add a Work/Characteristics JOE Pair to the JOT
Use $#ADD to add a job output element (JOE) to the appropriate job output table
(JOT) queue and add the characteristics JOE to the characteristics queue.

Format Description

WORK=
Specifies the address of a prototype work JOE that is to be added to the JOT.

CHAR=
Specifies the address of a prototype characteristics JOE that is to be merged
into the characteristics queue.

ÊÊ
symbol

$$WTOR message-addrx
(R1)

ÊÍ

ÊÊ
symbol

$#ADD WORK= addrx
R0

,CHAR= addrx
R1

Ê

Ê
,RELATED= char-string ADDED= label NOTADDED= label

Ê

Ê
NOJOE= label BADCLASS= label

ÊÍ

$$WTOR

24 z/OS V1R4.0 JES2 Macros

Notes:

1. The queue to which the work JOE is added is determined by the current
class of the JOECURCL and JOEROUT fields of the JOE or by the offload
status in the JOEFLAG2 field.

2. If the JOECURCL of the work JOE is invalid, $#ADD will issue a $DISTERR
message, DISASTROUS ERROR AT SYMBOL ADDSTERR IN CSECT
HASPJOS, unless it is apparent that the JOT has been corrupted. In this
event $#ADD terminates JES2 with a $ERROR, CATASTROPHIC ABEND
J07 INVALID SYSOUT CLASS FOUND.

3. When $#ADD returns control to the caller, register 1 points to the JOE.
$#ADD does not alter the setting of the JOE’s busy bits. It is the callers
responsibility to set these bits to the appropriate value.

RELATED=
Specifies a character string used to self-document this macro instruction call.
Any specification type value for macro keywords can be used here. This field is
useful for documenting the inline pairing of $#ADD and $#REM macro calls.

ADDED=
Specifies optional label to go to if the add worked.

NOTADDED=
Specifies optional label to go to if the add failed (RC>0). If NOTADDED is
specified, NOJOE and BADCLASS are not allowed.

NOJOE=
Specifies optional label to go to if the add failed because there are no JOEs
(RC=4). If NOJOE is specified, NOTADDED is not allowed.

BADCLASS=
Specifies optional label to go to if the add failed because the SYSOUT in the
prototype JOE was not valid (RC=8). If NOJOE is specified, BADCLASS is not
allowed..

Return Codes
The following return codes (decimal) are returned in register 15.

Return Code Meaning
0 The service was successfully performed.
4 The JOT is full; the request must be tried again later.
8 An invalid SYSOUT class is encountered; the JOE will not be

added.

Environment
v Main task.
v $WAIT can occur.

$#ALCHK – Obtain a Spool Record for Output Checkpointing
Use $#ALCHK to obtain a spool record for output checkpointing.

$#ADD

Chapter 3. JES2 Programmer Macros 25

Format Description

JOE=
Specifies the address of a work JOE. The spool record for this work JOE is to
be obtained. If register notation is used, the designated register must contain
the address of the work JOE before the execution of the macro. If this operand
is omitted, register 1 is assumed.

IOT=
Specifies the address of the IOT that is to be used for allocating the spool. If
register notation is used, the designated register must contain the address of
the IOT before the execution of the macro. If this operand is omitted, the IOT is
read from the spool. An indication is set in the generated inline parameter list
whether the IOT was passed.

WRIOT=
Specifies whether the IOT should be written back to the spool after $TRACK
obtains the spool record. The IOT is marked as an allocation IOT (IOT1ALOC).

JCT=
Specifies the address of the JCT. If this operand is omitted, the JCT is read
from the spool. If register notation is used, the designated register must contain
the address of the JCT before the execution of the macro. An indication
whether the JCT was passed is set in the generated inline parameter list.

WRJCT=
Specifies whether the JCT is to be written back to the spool. If WRJCT=YES is
specified and the JQE indicates that the job is still in execution, the JCT is not
written back to the spool. Otherwise, it is.

OKRET=
Specifies the address of a routine that is to receive control if the return code is
zero.

ERRET=
Specifies the address of an error routine that is to receive control if the return
code is not zero.

LOCK=
Specifies whether the job lock is to be obtained. LOCK=NO indicates that a wait
will occur for IOT/JCT serialization.

QUECKPT=
Specifies whether (YES) or not (NO) JES2 should defer requested access to
the job queue until this member owns the checkpoint.

ÊÊ
symbol

$#ALCHK
(R1)

JOE= addrx
,IOT= addrx

(R0)

Ê

Ê
YES

,WRIOT= NO
,JCT= addrx

(R15)
YES

,WRJCT= NO

Ê

Ê ,OKRET= addrx ,ERRET= addrx
YES

,LOCK= NO
NO

,QUECKPT= YES

ÊÍ

$#ALCHK

26 z/OS V1R4.0 JES2 Macros

Environment
v Main task.
v $WAIT can occur.

$#BLD – Format JOEs
Use $#BLD to format a pair of work and characteristics job output elements (JOEs)
in the provided work area.

Format Description

JOES=
Specifies the address of the work area that is to be formatted into work and
characteristics JOEs. If register notation is used, the address must be loaded
into the designated register before the execution of this macro instruction.

PDDB=
Specifies the address of the peripheral data definition block (PDDB) whose
contents are used to format the work and characteristics JOEs. If register
notation is used, the address must be loaded into the designated register before
the execution of this macro instruction.

JQE=
Specifies the address location of the JQE to which the PDDB belongs. The
location is specified as the address of the JQE from the start of the job queue.
The $DOGJQE service may return a real or artificial JQE. An artificial JQE
consists of the base JQE, the JQX, and the additional fields defined in the JQA.
If an address is used, it specifies the address of a fullword whose two
right-most bytes contains the JQE address.

Environment
v Main task.
v $WAIT can occur.

$#BUSY – Set or Test the Busy System Indicator of a JOE
Use $#BUSY to set or test the busy system indicator for a job output element
(JOE).

ÊÊ
symbol

$#BLD JOES= addrx
(R1)

,PDDB= addrx
(R0)

,JQE= addrx
(R15)

ÊÍ

$#ALCHK

Chapter 3. JES2 Programmer Macros 27

Format Description

JOE=
Specifies the address of the JOE whose busy indicator is to be set. If you use
register notation, provide the address of the JOE in the specified register. If you
specify a label, that label is the address of the JOE. (For example, you can
specify JOE=JOE if you set a base register for the JOE DSECT.)

ACTION=
Specifies whether the busy indicator for this JOE is to be set on (ON) or turned
off (OFF).

ON
Indicates this member is processing this element.

OFF
Indicates that this element is not being processed by any members.

(TEST,ANY)
Indicates that the JOE should be tested to determine if the JOE is busy on
any member of the MAS

(TEST,LOCAL)
Indicates that the JOE should be tested to determine if the JOE is busy on
this member of the MAS

(TEST,field)
Indicates that the JOE should be tested to determine if the JOE is busy on
the member of the MAS whose member number is specified in the
indicated 1-byte field

(TEST,(Rn))
Indicates that the JOE should be tested to determine if the JOE is busy on
the member of the MAS whose member number is specified in the
indicated register

#POST=
Specifies whether or not a $#POST of the JOE will be done.

YES
Indicates a $#POST of the JOE will be done.

NO
Indicates a $#POST of the JOE will not be done. This is the default.

Note: #POST= is only valid if you also specify ACTION=OFF.

ÊÊ
symbol

$#BUSY JOE= Rn
label

,ACTION= ON
OFF
(TEST,ANY)
(TEST,LOCAL)
(TEST,field)
(TEST, (Rn))

Ê

Ê
,BUSY= label

R(n)
,NOTBUSY= label

R(n)
YES

,REAL= NO

Ê

Ê
YES

,TRACE= NO
YES

,#POST= NO

ÊÍ

$#BUSY

28 z/OS V1R4.0 JES2 Macros

|
|

|
|

|
|

|

BUSY=
Specifies a label or register to which to branch if the JOE is busy on the
particular member of the MAS.

BUSY= is only valid if you also specify ACTION=(TEST,...).

NOTBUSY=
Specifies a label or register to which to branch if the JOE is not busy on the
particular member of the MAS.

NOTBUSY= is only valid if you also specify ACTION=(TEST,...).

REAL=
Specifies whether this is a ‘real’ JOE within the JES2 checkpoint data set (YES)
or a prototype JOE in a work area (NO). If REAL=YES, JES2 validates the
JOE.

TRACE=YES and REAL=NO are mutually exclusive.

TRACE=
Specifies whether (YES) or not (NO) this modification to the busy indicator is to
be traced by the SYSjes2 component trace. Refer to z/OS MVS Diagnosis:
Tools and Service Aids for further information concerning SYSjes2 component
tracing.

YES
Indicates that tracing is set on for this $#BUSY call.

TRACE=YES and REAL=NO are mutually exclusive.

NO
Indicates that tracing is set off for this $#BUSY call.

TRACE=YES and REAL=NO are mutually exclusive.

Notes:

1. TRACE= is only valid if you also specify either ACTION=ON or
ACTION=OFF.

2. IBM recommends that you do not turn SYSjes2 tracing off. If JES2
encounters a problem related to $#BUSY services, the data obtained
from this trace can significantly aid debugging procedures.

Environment
v Main task.
v $WAIT or WAIT cannot occur.

Notes:

1. On return from the $#BUSY routine, register 15 will contain a 0 (zero) if you
specified ACTION=ON or ACTION=OFF. JES2 provides no return codes for
ACTION=(TEST,...).

2. When ACTION=ON or ACTION=OFF, and REAL=YES, a $CKPT of the JOE will
be done.

3. Register usage:

v $#BUSY uses registers R0, R1, R14, and R15 as work registers.

v On entry, $#BUSY requires that R11 contain the address of the HCT.

$#BUSY

Chapter 3. JES2 Programmer Macros 29

|

|
|

$#CAN – Cancel All Work Items Not Currently Being Processed for a
Specific Job

Use $#CAN to remove from the JOT all available work items for a job. Work items
removed are not processed by any output processor.

Format Description

JQE=
Specifies the address of the job queue element for which all JOT entries are to
be purged.

Note: The specified job is purged from the system if all of its output requirements
are removed and its current queue position is $HARDCPY.

Environment
v Main task.
v $WAIT can occur.

$#CHK – Process Print/Punch Checkpoint Spool I/O
Use $#CHK to process print/punch checkpoint spool I/O.

Format Description

TYPE=
Specifies whether the operation is a checkpoint read or write. The read or write
indication is placed in an inline parameter list (CHK1RD for read and CHK1WR
for write). This operand must be specified or an error occurs at assembly time.

BUF=
Specifies the address of the checkpoint I/O buffer. If register notation is used,
the designated register must contain the address of the buffer. If this operand is
omitted, BUF=(R1) is assumed.

JOE=
Specifies the address of the work JOE associated with the spool I/O. If register
notation is used, the designated register must contain the address of the work
JOE before execution of the macro. This keyword is required.

ÊÊ
symbol

$#CAN JQE= addrx
(R1)

ÊÍ

ÊÊ
symbol

$#CHK TYPE= READ
WRITE (R1)

,BUF= addrx

Ê

Ê ,JOE= addrx
(R0) YES

,WAIT= NO
PPPDADCT

,DCT= addrx

Ê

Ê
,OKRET= addrx ,ERRET= addrx

ÊÍ

$#CHAN

30 z/OS V1R4.0 JES2 Macros

WAIT=
Specifies whether to wait for the spool I/O to complete and whether to set a
return code. WAIT=YES indicates to wait for the I/O to complete and to set a
return code. WAIT=NO indicates to not wait for the I/O to complete and to not
set a return code. If this operand is omitted, WAIT=YES is assumed.

Note: Specifying WAIT=NO nullifies the use of both the OKRET= and ERRET=
keywords.

DCT=
Specifies the DCT address needed to perform the spool I/O. If this operand is
omitted, PPPDADCT is used.

OKRET=
Specifies the address of a routine that is to receive control if the return code is
zero.

Note: Specifying WAIT=NO nullifies the use of OKRET.

ERRET=
Specifies the address of an error routine that is to receive control if the return
code is not zero.

Note: Specifying WAIT=NO nullifies the use of ERRET. Also, ERRET take
precedence over OKRET when both operands are specified.

Environment
v Main task.
v $WAIT can occur.

$#DISPRO – Process JOE Disposition
Use $#DISPRO to specify a new disposition for a JOE. If a new disposition is not
specified, the JOE’s disposition will be processed as follows:

v If the disposition is OUTDISP=KEEP, the JOE’s disposition will be altered to
OUTDISP=LEAVE.

v If the disposition is OUTDISP=WRITE, the JOE will be removed from the queue.

v If the disposition is OUTDISP=LEAVE or OUTDISP=HOLD, the JOE’s disposition
will not be modified.

Format Description

ENF=
Specifies whether(YES) or not (NO(default)) JES2 generates an ENF signal,
with QCODE of ENF58_Q_DESELECT_NOT_PROCESSED.

Note: If the JOE is in system hold status, JES2 generates a QCODE of
ENF58_Q_DESELECT_ERROR, otherwise JES2 generates a QCODE of
ENF58_Q_DESELECT_NOT_PROCESSED.

ÊÊ
symbol

$#DISPRO JOE= addrx
R0 ,NEWDISP= disposition

ÊÍ

$#CHK

Chapter 3. JES2 Programmer Macros 31

IOT=
Specifies the input/output table (IOT) address for a specific spin JOE to be used
if an ENF 58 signal is generated. Valid only if ENF=YES.

If you provide neither a PQE nor IOT address, JES2 uses the MTTR in the
JOEIOTTR to read in the IOT in order to generate the ENF 58 signal.

JOE=
Specifies the address or a register that contains the address of the JOE whose
disposition is to be checked or changed. If you specify a register, you cannot
use R0.

NEWDISP=
Specifies the new disposition for the JOE.

Valid output dispositions are:

HOLD Hold the output. JES2 does not process the output until you either
change the disposition to WRITE or KEEP, or release the output. When
the output is released, the disposition changes to WRITE.

KEEP Process the output and then keep a copy of it on spool. After
processing, the disposition of this output becomes LEAVE.

LEAVE
JES2 does not process the output until you change the disposition to
WRITE or KEEP, or release the output. When the output is released,
the disposition changes to KEEP.

PURGE
Purge the output immediately.

WRITE
Process the output then purge it.

A register can also be used, if the output group disposition equates found in
$HASPEQU are in the low order byte of the register. You cannot use register 1.

PQE=
Specifies the Print Que Element address for a specific spin JOE to be used
when generating an ENF 58 signal. Valid only if ENF=YES.

Environment
v Main task.
v $WAIT can occur.

$#GET – Search the JOT Class Queues for an Output Element which
Matches the Requesting Specification

Use $#GET to search the JOT for output work.

$#DISPRO

32 z/OS V1R4.0 JES2 Macros

Format Description

DCT=
Specifies the address of the JES2 device control table (DCT) for the requesting
processor. The device setup fields in the DCT are used in the process of
selecting work.

DCT= is mutually exclusive with WSP=.

CHAIN=
Specifies either that all (YES) eligible job-related JOEs are to be chained to the
transmitter chain and returned to the caller, or only the first (NO) eligible JOE is
to be returned to the caller.

CHAIN=YES is mutually exclusive with HAVE=NO.

COUNT=
Specifies whether (YES) or not (NO) JES2 should count the pages or lines or
JOEs which match the selection criteria.

COUNT=YES is mutually exclusive with CHAIN=, FOUND=, HAVE=,
KEEPIOT=, NONE=, and SAF=.

FOUND=
Specifies a label or address in a register to branch to if a selectable JOE is
found.

HAVE=
Specifies that if a selectable JOE is found it is not to be assigned to the
requester (NO), or if a selectable JOE is found it is to be assigned to the
requester (YES).

HAVE=NO is mutually exclusive with CHAIN=YES.

KEEPIOT=YES|NO
Specifies whether the IOT buffer has been passed to $#GET by the caller. If
KEEPIOT=YES, JES2 will not issue a $GETBUF or $FREEBUF for the IOT
buffer. Your routine must place the address of the IOT buffer in PCEBUFAD.

KEEPIOT=YES is mutually exclusive with SAF=NO.

NONE=
Specifies a label or an address in a register to branch to if there are no
selectable JOEs found.

ÊÊ
symbol

$#GET DCT= addrx
(R1)

WSP= label
(Rn) NO

,COUNT= YES

Ê

Ê
NO

,CHAIN= YES
,FOUND= relexp YES

,HAVE= NO

Ê

Ê
NO

,KEEPIOT= YES
,NONE= relexp NO

,SAF= YES

Ê

Ê
WS

,TYPE= NET

ÊÍ

$#GET

Chapter 3. JES2 Programmer Macros 33

SAF=
Specifies whether (YES) or not (NO) JES2 will perform a security authorization
facility (SAF) check at this time. SAF=NO causes the SAF check to be deferred
until a later time.

SAF=NO is mutually exclusive with KEEPIOT=YES.

TYPE=
Specifies that for this $#GET call, either the network queue (NET) is searched
or the work selection (WS) algorithm is used.

If you specify TYPE=NET, you must also specify DCT=.

WSP=
Specifies a register (R2-12) or label of the field containing the address of the
work selection parameter list (WSP) which JES2 loads into R1.

WSP= is mutually exclusive with DCT=.

If you specify TYPE=NET, you must also specify DCT=.

Environment
v Main task.
v $WAIT can occur.

$#GETHDJ – Get Held JOE
Use $#GETHDJ to search an output queue to find the held JOE for a job’s output.

Format Description

CLASS=
Specifies the address of a class list. The class list can have a maximum of
eight classes. If less than eight classes are specified, then the last class should
be delineated by a blank. If CLASS is specified, $#GETHDJ will do additional
checking to ensure the JOE class matches one of the classes in the list.
CLASS is an optional keyword. There is no default value. It is only honored
when PSO=YES is also coded.

QUEUE=
Specifies the queue to be searched.

HOLD
Specifies that the HOLD queue should be searched for the first JOE.
$#GETHDJ returns in register 1 the address of the JOE. If there is no held
JOE, register 1 contains a 0.

JOB
Specifies that the JQE JOE chain should be searched for the first held JOE.
$#GETHDJ returns in register 1 the address of the first held JOE. If there is
no held JOE, register 1 contains a 0.

ÊÊ
symbol

$#GETHDJ
addrx
CLASS= (Rn)

Ê

Ê
QUEUE= HOLD ,JQE= addrx

JOB (Rx)
NO

,PSO= YES

ÊÍ

$#GET

34 z/OS V1R4.0 JES2 Macros

JQE=
Specifies the address of the first JQE in the chain to search for held data sets.
This operand is required if QUEUE=JOB is specified.

PSO=
Specifies whether (YES) or not (NO) JES2 is to check if the JOE is available to
the process SYSOUT (PSO) processor. PSO= is ignored if you also specify
QUEUE=HOLD.

Environment
v JES2 main task.
v $WAIT cannot occur.

$#JOE – Find and Validate Queue
Use the $#JOE to cause the output service processors to generate the address for
the head of a specified queue. You can then reference the first JOE on the queue
through the JOENEXT field. You must establish addressability to the JOT before
you use this macro instruction.

Format Description

Q=
Specifies the address or a register containing the address of the storage
location containing the requested SYSOUT class or the address of the offset
into one of the special queues. The possible queues that can be specified are:

JOTNTWQI
The network queue.

JOTHLDQI
The held queue.

JOTPRGQI
The purge queue.

JOTRBLQI
The rebuild queue.

ÊÊ
symbol

$#JOE Q= Rn
addrx
JOTNTWQI
JOTHLDQI
JOTPRGQI
JOTRBLQI
JOTFREQI
JOTCHRQI

JQE=addrx
CHAR=addrx

,R= Rn
,DSERV= addrx

Ê

Ê
,DEST= LOC

RMT
USER

,GETFIRST= NO
YES

,INV= relexp
Ê

Ê
,PTRREG= Rx ,LOOP= label ,NOMORE= label

PREG= Rm

ÊÍ

$#GETHDJ

Chapter 3. JES2 Programmer Macros 35

JOTFREQI
The free queue.

JOTCHRQI
The characteristics JOE queue.

R=
Specifies the register (Rn) into which the address of the desired queue head is
to be loaded.

INV=
Specifies the label of the statement to which control is to be returned if the
requested queue is invalid. If you omit this parameter, no check is made to
ensure the validity of the queue. Do not code this operand if you also
specify Q=JOTNTWKQ or Q=JOTHLDQ .

DEST=
Specifies the destination queue within the class specified by the Q=operand.
Possible values are as follows:

LOC
The local queue for this class.

RMT
The remote queue for this class. Do not code DEST=RMT if you
specified Q=JOTNTWKQ or Q=JOTHLDQ .

USER
The queue for all userids in this class. Do not code DEST=USER if you
specified Q=JOTNTWKQ or Q=JOTHLDQ .

DSERV=
Specifies the address of the checkpoint version of the DSERV control block. If
not specified, the real checkpoint is used. AR ASC mode must be turned on in
order to specify DSERV=.

DSERV= is required if not running in the main task and not allowed if running
in the main task.

The address of the DSERV control block can be obtained with either the SSI
function code 71 or the $CALL CKPTVERS service in HASCSRIC.

LOOP=
Specifies the name of a label the macro generates to get the next JOE.

When LOOP= and NOMORE= are specified, the macro generates the code
needed to loop through all the JOEs on a queue.

When looping back to loop, the value in R= must be unchanged from the
value previously returned from the macro.

LOOP= is optional, however, if LOOP= or NOMORE= is coded, then both
must be coded.

NOMORE=
Specifies the label of where to branch when there are no more JOEs on the
queue.

NOMORE= is optional, however, if LOOP= or NOMORE= is coded, then
both must be coded.

GETFIRST
Indicates whether (YES), the default if JQE= is specified, or not (NO) the first
JOE is to be obtained, rather than the zeroth JOE.

$#JOE

36 z/OS V1R4.0 JES2 Macros

GETFIRST= is NOT valid when the LOOP= keyword is specified. .

GETFIRST=NO is only allowed in conjunction with the Q= keyword or the
CHAR= keyword and then only when the LOOP= keyword is not specified.

JQE=
Specifies the address of the JQE whose JOEs are to be processed. JQE=, Q=,
or CHAR= must be specified.

CHAR=
Specifies the address of the CHAR JOE whose JOEs are to be processed.
JQE=, Q=, or CHAR= must be specified.

PTREG=
Specifies the register containing the index or offset of JOE returned in R=.
LOOP or GETFIRST=YES must be specified.

PREG=
Specifies the register containing the address of JOE that pointed to the JOE
returned in R=. This can be the 0th JOE. This is used if the JOE that was
returned is placee on a different queue and you want to continue looping where
you left off.

Place the value from this register into the register specified in R= to resume
scanning the queues. This operand is optional and is only valid when LOOP= is
specified. Valid registers are R2–R10 and R12.

Environment
v Main task.
v $WAIT cannot occur.

$#JWEL – JOE Writer Exclude List (JWEL) Services
Use $#JWEL to add, purge, attach, or detach (without release) a JOE writer
exclude list (JWEL) or search for a JWEL already queued for a specific device.

The function for which you invoke this macro, dictates the required, optional, and
unallowable parameters you can code on a particular call. Be certain to review
Table 3 on page 40 for a summary of parameter restrictions.

$#JOE

Chapter 3. JES2 Programmer Macros 37

Format Description

WORK=
Specifies the address or a register (R2-R10) that contains the address of a JOE
in the JOT whose JWELs require processing.

DEVID=
Specifies the address or a register (R2-R10) that contains the address of a
device ID associated with the JWEL. DEVID= can only be specified on a
FUNC=ADD call. If not specified, JES2 sets this address to 0.

DEVNR=
For FUNC=ADD and FUNC=SEARCH calls, this parameter specifies the
address or a register (R2-R10) that contains the address of a device number
associated with the JWEL based on the type of function you request as follows:

For FUNC=ADD
Indicates a device number in one of the following formats:

v DEVNR=(n,m)

where:
n is the address of a 4-byte number
m is the address of an 8-byte number

JES2 uses only one of these values in the JWEL based on the
following:

ÊÊ
symbol

$#JWEL WORK= addrx
(Rn) 0

,DEVID= addr
(Rn)

Ê

Ê
,DEVNR= devnum

(n,m)
(n, SHORT)

LONG

,ERRET= addr
(Rn)

Ê

Ê
,FOUND= addr

(Rn)

Ê

Ê
ADD

,FUNC= ()
,COND ,INIT ,ANCHOR

(PURGE)
,FORCE
,CONDITIONAL

(SEARCH ANY)
ALL

ATTACH
DETACH

Ê

Ê
,JWEL= addr

(Rn)
,NOTFOUND= addr

(Rn)
,OKRET= addr

(Rn)

ÊÍ

$#JWEL

38 z/OS V1R4.0 JES2 Macros

If n is 0, not supplied here, or points to 4 bytes of zeroes, then JES2
uses m and assumes it to be a valid 8-byte number, otherwise JES2
uses the n specification.

v DEVNR=(n,SHORT | LONG)

where:
n is the device address
SHORT is a “short” device number
LONG is a “long” device number

v DEVNR=n

where:
n is an address or the complement of an address. If n is positive,
then DEVNR= is the address of a 4-byte device number. If n is
negative, then DEVNR= is the complemented address of an 8-byte
device number.

For FUNC=SEARCH
Indicates a device number.

v DEVNR=(n,m)

where:
n is the address of a 4-byte number
m is the address of an 8-byte number

JES2 uses both values (n and m) if provided. n specifies the short
device number, and m specifies the long device number. If either
value is missing or point to a field of zeroes, then JES2 suppresses a
search for that length device number.

If n is 0 , not supplied here, or points to four bytes of zeroes, then
JES2 uses m and assumes it to be a valid 8-byte number.

ERRET=
Specifies the label or register that contains the address of an error routine that
is to receive control if processing is not successful (return code is non-zero).

FOUND=
Specifies the label or register that contains the address to which to branch if
JES2 does find the JWEL on a FUNC=SEARCH call.

FUNC=
Specifies the function of this $#JWEL call as follows:

Refer to Table 3 on page 40 for a summary of parameter restrictions associated
with specific FUNC= calls.

ADD[,COND]
Indicates a request to JES2 to add a JWEL to the queue of JWELs for the
specified JOE. COND indicates that JES2 should not add the JWEL if
another JWEL with the same device number already exists.

PURGE[,FORCE|,CONDITIONAL]
Indicates that JES2 should remove all JWELs associated with the specified
JOE. FORCE

,FORCE
Indicates that JES2 is to unconditionally force purge processing.

,CONDITIONAL
Indicates that 4 byte JWELs, created for SAF reasons, will be
eliminated. The 8 byte JWELs, created for SAPI reasons, will be
eliminated only if the JOE and the JWEL no longer match in their

$#JWEL

Chapter 3. JES2 Programmer Macros 39

timestamp or the JOE is on the free queue. If JWELs are removed
$#TJEV will be called to delete the TJEV elements.

Note: INIT places the JOE creation time in the JWEL anchor.

,INIT
Places the JOE creation time in the JWEL anchor.

,ANCHOR
Determines the address of the JWEL anchor for the given JOE.

SEARCH
Indicates that JES2 is to check if a JWEL with the same device number
already exists.

ANY
Optionally, indicates that JES2 should return an return code of 4 if JES2
finds any non-transient (non-$JWEBULK) JWELs for the JOE.

ALL
Optionally, indicated that the JWELs that JES2 finds must match the
search criteria. If any JWEL does not match, or JES2 finds no JWELs,
JES2 returns a return code of 0. JES2 does not consider transient
($JWEBULK) JWELs in this search.

Note: If you do not include either ANY or ALL, then JES2 searches for
a match on either form (n or m) of the DEVNR= parameter and
returns a return code of 4 if found.

ATTACH
Indicates that JES2 is to attach a chain of JWELs to the JOE.

DETACH
Indicates that JES2 is to remove all JWELs from the JWEL anchor without
freeing them. Use this prior to a subsequent ATTACH call.

JWEL=
Specifies the label or register that contains the address of the first JWEL in the
chain of JWELs that JES2 is to attach to a specified JOE.

You can only specify JWEL= on a FUNC=ATTACH call.

NOTFOUND=
Specifies the label or register that contains the address to which to branch if
JES2 does not find the JWEL on a FUNC=SEARCH call.

OKRET=
Specifies the label or register that contains the address of a routine that is to
receive control if processing is successful (return code is 0).

Programming Considerations
Based on the function (FUNC=) for which you are requesting this call, the set of
required, optional, and unallowable parameters can be summarized as follows:

Table 3. Summary of $#JWEL Parameter Requirements and Restrictions

Parameters ADD SEARCH PURGE ATTACH/
DETACH

INIT ANCHOR

WORK= Required Required Required Required Required Required

DEVID= Optional Invalid Invalid Invalid Invalid Invalid

DEVNR= Required Required Invalid Invalid Invalid Invalid

$#JWEL

40 z/OS V1R4.0 JES2 Macros

Table 3. Summary of $#JWEL Parameter Requirements and Restrictions (continued)

Parameters ADD SEARCH PURGE ATTACH/
DETACH

INIT ANCHOR

ERRET= Optional Invalid Optional Invalid Invalid Invalid

FOUND= Invalid Optional Invalid Invalid Invalid Invalid

JWEL= Invalid Invalid Invalid * Invalid Invalid

NOTFOUND= Invalid Optional Invalid Invalid Invalid Invalid

OKRET= Optional Invalid Optional Invalid Invalid Invalid

*Required for ATTACH, Invalid for DETACH.

Return Codes
The following return codes (decimal) are returned in register 15.

Return Code Meaning
0

v ADD - element added

v ATTACH - only return code provided

v DETACH - only return code provided

v INIT - only return code provided

v ANCHOR - only return code provided

v PURGE - JWEL chain emptied

v (PURGE,CONDITIONAL) - JWEL chain is now empty

v SEARCH - device with same number not found

v (SEARCH,ALL) - no JWELs found or not all JWELs match the
search criteria

v (SEARCH,ANY) - no JWELs found
4

v ADD - element not added

v PURGE - JWEL chain left unchanged

v (PURGE,CONDITIONAL) - JWEL chain left intact

v SEARCH - device with same number found

v (SEARCH,ALL) - at least one JWEL found; all JWELs found
match the search criteria

v (SEARCH,ANY) - one or more JWELs exist for this JOE
8

v (PURGE,CONDITIONAL)- SAF JWELs deleted, SAPI JWELs not
touched

Environment
v Main task.
v $WAIT cannot occur.

$#JWEL

Chapter 3. JES2 Programmer Macros 41

$#MOD – Move a Work JOE from One Queue to Another in the JOT
Use $#MOD to remove a work JOE from the queue it is currently on and to place it
on the proper queue as determined by its routing (JOEROUT) or SYSOUT class
(JOECURCL). $#MOD should be issued after a JOE’s queue status has been
changed.

Format Description

JOE=
Specifies the address of the work JOE that is to be moved from one queue to
another.

SAPIJWEL=
Specify SAVE or PURGE. SAVE means that only the SAF JWELs are purged in
this operation. PURGE means that both SAF and SAPI JWELs are purged.

Environment
v Main task.
v $WAIT can occur.

$#POST – Post Output Device Processors
Use $#POST to post device processors that are waiting for work associated with
specific output devices. $#POST ensures that when a new piece of work becomes
available for processing, only those processors associated with the devices eligible
to select the work are posted. JES2 uses $#POST when a JOE is added or
returned to the JOT. $#POST is also used 1) when a message is spooled for a
remote, 2) when a node’s remote or local output device becomes available for use,
3) when a console or printer is added to notify when a node, remote processor, or
device becomes available for use, or 4) when a new path becomes available to a
node.

Format Description

TYPE=
Specifies what type of $#POST to issue. You can specify one of four types.
JOE specifies a work JOE $#POST. JQE specifies a JQE and associated work
JOE(s) $#POST. MSG specifies a spooled message $#POST. XMIT specifies a
SYSOUT transmitter $#POST. You must specify this operand; there is no
default.

ÊÊ
symbol

$#MOD JOE= addrx
(R1)

PURGE
,SAPIJWEL= SAVE ÊÍ

ÊÊ
symbol

$#POST TYPE= JOE
JQE
MSG
XMIT

,ADDR= addrx
(R1)

Ê

Ê
YES

,MASPOST= NO

ÊÍ

$#MOD

42 z/OS V1R4.0 JES2 Macros

ADDR=
Specifies an address. The address depends on the TYPE selected. For
TYPE=JOE, ADDR is the address of the work JOE that is to be $#POSTed. For
TYPE=JQE, ADDR is the address of the JQE whose work JOE(s) are to be
$#POSTed. For TYPE=MSG, ADDR is the address of the route code for the
remote printers or consoles that are to be $#POSTed. For TYPE=XMIT, ADDR
is the address of the line DCT associated with the SYSOUT transmitter(s) that
is to be $#POSTed; if this address is specified as zero, then all SYSOUT
transmitters that are waiting are $#POSTed.

MASPOST=
Specifies whether the work JOE(s) that are to be $#POSTed should have their
JOE post flags reset so that the post is propagated to all members in a
multi-access spool complex. MASPOST= is valid only when TYPE=JOE or
TYPE=JQE is specified.

Notes:

1. The MASPOST flag is passed in the first byte of the inline parameter list.

2. You need control of the checkpoint data set (obtained via $QSUSE) before
issuing this macro.

Environment
v Main task.
v $WAIT cannot occur.

$#PUT – Return an Unfinished Job Output Element (JOE) to the JOT
for Later Processing

Use $#PUT in a processor to return a JOE to the JOT for later processing.
Optionally, the status of the JOE is maintained for a warm start of the system or
restart of the work.

Format Description

ENF=
Specifies whether(YES) or not (NO(default)) JES2 generates an ENF signal,
with QCODE of ENF58_Q_DESELECT_NOT_PROCESSED.

Note: If the JOE is in system hold status, JES2 generates a QCODE of
ENF58_Q_DESELECT_ERROR, otherwise JES2 generates a QCODE of
ENF58_Q_DESELECT_NOT_PROCESSED.

IOT=
Specifies the input/output table (IOT) address for a specific spin JOE to be used
if an ENF 58 signal is generated. Valid only if ENF=YES.

ÊÊ
symbol

$#PUT WORK= addrx
(R1) NO

,ENF= YES
,IOT= addrx

Ê

Ê
,PQE= addrx ,PRC= addrx

(R0)
NONE
VALID

SAVE
,SAPIJWEL= PURGE

ÊÍ

$#POST

Chapter 3. JES2 Programmer Macros 43

If you provide neither a PQE nor IOT address, JES2 uses the MTTR in the
JOEIOTTR to read in the IOT in order to generate the ENF 58 signal.

WORK=
Specifies the address of a work JOE that is to be returned to the JOT class
queues for future selection.

PQE=
Specifies the print queue element address for a specific spin JOE to be used if
an ENF 58 signal is generated.

PQE= is only valid if you also specify ENF=Yes.

If you provide neither a PQE nor IOT address, JES2 uses the MTTR in the
JOEIOTTR to read in the IOT in order to generate the ENF 58 signal.

PRC=
Specifies the address of a checkpoint buffer if the current status of the work
item is to be stored. If PRC= is not specified or is specified as PRC=NONE, the
work item is reset to reflect its initial entry status. If PRC=VALID is specified, no
change is made to the current status of the work item.

SAPIJWEL=
Specify SAVE or PURGE. SAVE means that only the SAF JWELs are purged in
this operation. PURGE means that both SAF and SAPI JWELs are purged.

Environment
v Main task.
v $WAIT can occur.

$#REM – Remove a Work/Characteristics JOE Pair from the JOT
Use $#REM to remove a work and characteristics JOE pair from the JOT after the
output requirement they represent has been satisfied.

Format Description

WORK=
Specifies the address of a work JOE that is to be returned to the queue of free
JOEs in the JOT. If the related characteristics JOE is not being shared by
another work JOE, it is also returned to the free queue.

IOT=
Specifies the address of the spin IOT used to free the track groups used by
spin data sets if the IOT is already in storage. If the IOT is not in storage (that
is, not specified), it will be read.

KEEPJQE =
Specifies whether (YES) or not (NO) the JQE can be purged even if the last

ÊÊ
symbol

$#REM WORK= workjoe-addr
,IOT= spinjoe-IOT addr

Ê

Ê
NO

,KEEPJQE= YES
NO

,LOCK= YES
YES

,PURGE= NO

Ê

Ê
,RELATED= char-string

ÊÍ

$#PUT

44 z/OS V1R4.0 JES2 Macros

JOE is being removed from the JOT by a $#REM call. Use KEEPJQE=YES
only if the JOE is being added to the job output table (JOT) by a $#ADD call
immediately after the $#REM call.

KEEPJQE=YES is mutually exclusive with PURGE=YES.

LOCK=
Specifies whether (YES) or not (NO) the caller of the $#REM service routine
holds the job lock for the job for which the JOE is being removed.

PURGE=
Specifies whether (YES) or not (NO) to purge the track groups held for the spin
IOT.

PURGE=YES is mutually exclusive with KEEPJQE=YES.

RELATED=
Specifies a character string used to self-document this macro instruction call.
Any specification type value for macro keywords can be used here. This field is
useful for documenting the inline pairing of $#REM and $#ADD macro calls.

Note: The related job is purged from the system if all of its JOEs are removed and
its current queue position is $HARDCPY.

Environment
v Main task.
v $WAIT can occur if WAIT=YES is specified.

$#REP – Replace a Work or Characteristics JOE
Use $#REP to replace a work JOE with a new work and characteristics JOE. JES2
checks to be certain that enough free JOEs are available to add the new JOE. If
JES2 determines there are not enough JOEs, it optionally issues a $WAIT on behalf
of the caller and creates the required free JOE(s).

Format Description

WORK=
Specifies a label of a field or a register (R2-R10) that contains the address of
the prototype work JOE to be added to the job output table (JOT).

CHAR=
Specifies the address or a register (R2-R10) that contains the address of a
prototype characteristics JOE to be added to the JOT.

ÊÊ
symbol

$#REP WORK= workjoe-addr ,CHAR= addr
(Rn)

Ê

Ê
NO

,COPYJWEL= YES

,REMJOE= addr
(Rn) YES

,WAIT= NO

Ê

Ê
,ERRET= label

(Rn)
,OKRET= label

(Rn)

ÊÍ

$#REM

Chapter 3. JES2 Programmer Macros 45

COPYJWEL=
Specifies that the JWELs associated with the JOE that is to be replaced are to
be copied to the JOE being created (YES) or discarded (NO).

REMJOE=
Specifies the address or a register (R2-R10) that contains the address of the
work JOE that is to be removed ($#REMed) from the JOT.

WAIT=
Specifies whether (YES) or not (NO) JES2 is to issue a $WAIT macro if the
JOT is full and cannot immediately add the new JOE. WAIT=YES is the default
but if overridden with WAIT=NO and the JOT is also full, processing fails with
return code 4.

ERRET=
Specifies a label or register that contains the address of a routine to receive
control if processing is not successful (a non-zero return code is returned in
R15).

OKRET=
Specifies a label or register that contains the address of a routine to receive
control if processing is successful (a 0 return code is returned in R15).

Return Codes
The following return codes (decimal) are returned in register 15.

Return Code Meaning
0 Processing successful. New JOE added.
4 Processing failed. The JOT is full; JES2 could not issue a $WAIT to

create a new free JOE because WAIT=NO was explicitly specified.
8 Processing failed. The SYSOUT class was not valid; therefore,

JES2 did not remove the JOE specified.

Environment
v Main task.
v $WAIT can occur.

$#TJEV – Manage the Thread JOE Exclusion Vector
Use $#TJEV to manage the thread JOE exclusion vector. There are at most one of
these vectors per SAPID. The vector’s function is to provide a way for an
application to state that a given data set should be kept, but never shown to the
keeping thread again.

Format Description

FUNC=
Specifies the service being requested.

ÊÊ
symbol

$#TJEV Ê

Ê FUNC= ADD SAPID= address JOE= address
MOVE NEWJOE= address
PURGE
SEARCH SAPID= address

FOUND= address NOTFOUND= address
register register

(SEARCH,ANY)

ÊÍ

$#REP

46 z/OS V1R4.0 JES2 Macros

ADD
Use the JOE address and SAPID address provided to turn on the bit
representing the given JOE in the TJEV pointed to by the SAPID. If no
TJEV exists for the SAPID, create one and turn on the bit.

SEARCH
Use the JOE and SAPID addresses provided to see if the JOE is excluded
from the selection by the thread. FOUND and NOTFOUND is used to
branch to the appropriate logic point

SEARCH,ANY
Use the JOE address provided and examine all TJEVs in the system to see
if any of them has the bit turned on for the JOE provided. FOUND and
NOTFOUND are used to branch to the appropriate logic point.

PURGE
Use the JOE address provided and examine all TJEVs in the system.
Ensure all TJEVs have the bit turned off that represents the JOE.

MOVE
Use the JOE and NEWJOE addresses provided to move the TJEV setting
for the JOE to the setting for the NEWJOE. All TJEVs are altered. When
finished, the bit corresponding to the JOE is turned off in every TJEV.

JOE=
Specifies the address of the work JOE whose corresponding bit in the TJEV is
being managed.

SAPID=
Specifies the address in the SAPID data space of the control block representing
the thread.

Note: Invalid operand if FUNC=PURGE, MOVE, or SEARCH,ANY. Required
operand if FUNC=ADD or SEARCH.

NEWJOE=
Specifies the address of the JOE whose setting should be moved from the JOE
indicated by the JOE= parameter.

Note: Valid only if FUNC=MOVE.

FOUND=
Specifies a label to be branched to or a register to be branched on if the bit is
found when FUNC=SEARCH is specified.

NOTFOUND=
Specifies a label to be branched to or a register to be branched on if the bit is
not found when FUNC=SEARCH is specified.

Return Codes
The following return codes (decimal) are returned in register 15.

Return Code Meaning
0

The return code is always zero for FUNC=ADD,PURGE,MOVE.

For the two SEARCH functions, 0 means not found.
4 For the two SEARCH functions, 4 means bit representing the JOE

was found.

$#TJEV

Chapter 3. JES2 Programmer Macros 47

8 For the SEARCH,ANY function, 8 means bit representing JOE was
found only in TJEV pointed to by the given SAPID.

Environment
This macro can be used in the JES2 environment only.

$ACTIVE – Specify Processor is Active
Use $ACTIVE to indicate to JES2 that the associated processor is performing
activities for the JES2 main task; this prevents JES2 from being cleanly withdrawn
from the system (via $P JES2) when JES2 is processing a job or task.

Format Description

R=
Specifies the work register which is to be used by the $ACTIVE macro
instruction. Do not enclose the register (R=) value in parenthesis. Register 1 is
the default.

Notes:

1. JES2 is considered active when the active count is greater than 0
($DORMANT decreases the active count). When the active count is 0, JES2
issues $HASP099.

2. Do not use R=0.

Environment
v Main task.
v $WAIT cannot occur.

$ALLOC – Allocate a Unit Record Device
Use $ALLOC to allocate a unit record or teleprocessing device to JES2.

Format Description

dct
Specifies the address of the DCT to be allocated.

error
Specifies a location to which control is returned if the device (DCT) cannot be
allocated. The condition code is set to reflect the allocation of the DCT as
follows:

CC=0
The device could not be allocated.

CC≠0
The device was successfully allocated.

ÊÊ
symbol

$ACTIVE
R= Rn

ÊÍ

ÊÊ
symbol

$ALLOC dct-addrx
(R1) ,error-relexp

ÊÍ

$#TJEV

48 z/OS V1R4.0 JES2 Macros

Environment
v Main task.
v $WAIT can occur.

$ALESERV – JES2 ALET Services
Use $ALESERV to add or delete access list entry tables (ALETs). This macro
service also maintains a list of the ALETs for JES2-owned address spaces.

Format Description

ACTION=
The action to be taken:

ADD | DELETE
Specifies that JES2 is to add (ADD) or delete (DELETE) an ALET.

Note: You must also specify one and only one of the following: DSB=,
HASXB=, NAME=, or NAMEFLD=.

DSB=
Specifies the address of the data space block (DSB) associated with the data
space for which you want an ALET added or deleted.

If you specify DSB=, you cannot specify HASXB=, NAME=, or NAMEFLD=.

HASXB=
Specifies the address of the address space extension block (HASXB) for which
a DELETE ALL is required. HASXB= implies NAME=ALL and can only be
specified on a ACTION=DELETE call.

If you specify HASXB=, you cannot specify DSB=, NAME=, or NAMEFLD=.

NAME=
Specifies the name of the ALET requested. This name must match either the
name specified on a $DSPSERV CREATE call or one of the predefined names
in $ALINDEX. NAME=ALL requests that JES2 delete all ALETs. NAME=ALL can
only be specified on a ACTION=DELETE call.

If you specify NAME=, you cannot specify DSB=, HASXB=, or NAMEFLD=.

NAMEFLD=
Specifies a label that contains the name of the ALET or a register that points to
the name of the ALET to be processed. This name must match either the name
specified on a $DSPSERV CREATE call or one of the predefined names in
$ALINDEX. A field that contains the value ALL is equivalent to specifying
NAME=ALL and only allowable on a ACTION=DELETE call.

If you specify NAMEFLD=, you cannot specify DSB=, HASXB=, or NAME=.

ERRET
The label to branch to in the event of a non-zero return code.

ÊÊ
symbol

$ALESERV ACTION= ADD
DELETE

DSB= addr
HASXB= addr
NAME= name
NAMEFLD= label

(Rn)

Ê

Ê ERRET= label OKRET= label ÊÍ

$ALLOC

Chapter 3. JES2 Programmer Macros 49

OKRET
The label to branch to if the return code is zero.

Programming Notes
v If JES2 has already added a requested ALET, a new ALET is not added.

v If the ALINDEX does not exist, JES2 creates it on the first ADD call.

v If this is a DELETE call and NAME=ALL (or implied), JES2 deletes the ALINDEX
table.

v If all ALETs in the ALINDEX table are deleted, the table is not also deleted.

Return Codes
The following return codes (decimal) are returned in register 15.

Return Code Meaning
0 Processing successful. If ADD call, ALET is returned in R1.
4 Processing failed. Zero returned in R1.
8 Processing failed. JES2 cannot identify the ALET identifier passed

to it. Zero returned in R1.
12 A logic error occurred due to a mismatch of the action requested

(ADD or DELETE) and the ALET identifier passed to JES2, such as
$ALESERV ADD,NAME=ALL.

Environment
v JES2 main task, subtask, functional subsystem (HASPFSSM), or user

environment.
v $WAIT cannot occur.
v Callers can be in AR ASC mode.

$AMODE – Set the Addressing Mode
Use the $AMODE macro instruction to set 24-bit and 31-bit addressing modes.

Format Description

mode
Specifies the addressing mode to be used by the code that follows this macro
until it is again specified. This is a positional parameter and must be specified if
PUSHR= is also specified. Do not use this operand if POPR= is specified.

24 Specifies 24-bit addressing mode.

31 Specifies 31-bit addressing mode.

PUSHR=
Specifies a register to be used to store the current addressing mode. If mode is
specified, this keyword is also required.

ÊÊ
symbol

$AMODE
mode
PUSHR=Rn

,POPR=Rn

R15
,R= Rn Ê

Ê
,RELATED=char-string

ÊÍ

$ALESERV

50 z/OS V1R4.0 JES2 Macros

Note: Do not enclose the specified register in parenthesis.

POPR=
Specifies a register to be used to restore the previous addressing mode. The
register specified here must have been previously loaded by a $AMODE mode
PUSHR= instruction. Do not specify this keyword if mode and PUSHR= are
specified.

Note: Do not enclose the specified register in parenthesis.

R=
Specifies a work register to be used by this macro instruction. Register 15 is the
default.

Note: Do not enclose the specified register in parenthesis.

RELATED=
Specifies a character string used to self-document this macro instruction call.
Any specification type value for macro keywords can be used here. This field is
useful for documenting the inline pairing of $AMODE macros.

Environment
v JES2 main task, JES2 subtask, FSS, and user environment.
v Waits cannot occur.

$ARMODE – JES2 Multi-Address Space Access
Use the $ARMODE macro instruction to perform functions related to multi-address
space management, such as switching access register control mode, and how the
access registers are to be loaded.

Format Description

ON|OFF
Specifies whether the call to $ARMODE is to set the access register control
mode ON or OFF. If you do not set this value, the current AR-mode remains in
effect.

Note: If this parameter is specified it must be coded first .

INIT=
Specifies that all access registers are loaded with the 16 consecutive full-words
beginning at the storage location pointed to by this address.

ÊÊ
symbol

$ARMODE
ON
OFF

,INIT=addrx
,AR=(Rn)

...,Rn
Ê

Ê
,ALET= (Rn)

...,Rn
(value)

...,value

,RELATED=label
Ê

Ê
NOSET

,SYSSTATE= SET

ÊÍ

$AMODE

Chapter 3. JES2 Programmer Macros 51

AR=
Specifies the access registers that are loaded with the values specified by
ALET=. These registers are set in the order specified. You can specify up to 16
access registers.

ALET=
Specifies a list of values (ALETs) that are set in the access registers specified
by AR=. You can specify either a register(s) or a fullword value(s). If any or all
of these ALET values are not specified, the corresponding register(s) is set to 0.
Each ALET points to an entry on an access list. For more information, see Data
Space Usage.

RELATED=
Specifies a valid alphanumeric label that this macro is related to.

Note: If the label referred to by this keyword does not exist, an assembler error
will occur.

SYSSTATE=
Specifies whether (SET) or not (NOSET) a SYSSTATE macro is issued. The
SYSSTATE macro is used to indicate that a caller is in AR mode and provides
the generation of code and addresses that are appropriate for callers in that
mode.

Notes:

1. The contents of general registers 0 and 1 are destroyed across a call to
$ARMODE.

2. If ALET= is specified, AR= must be specified.

Environment
v All JES2 environments.
v MVS WAITs or JES2 $WAITs cannot occur.

$BERTTAB – Map Block Extension Reuse Table (BERT) Table Entries
Use $BERTTAB to map and generate BERT table entries. BERTTAB entries are
used to define data to be stored in the BERT portion of the checkpoint. $BERTTAB
is used to define the start or end of a table, entries within the table, or search keys.

Format Description

Note: The format description that follows breaks the macro into three sections:

v Boundary form – the form that starts or ends a table.

v Data definition form – the form that defines specific data to be placed in
the BERT.

v Search key form – the form that defines how to locate a specific element.

Boundary Form

ÊÊ
label

$BERTTAB TABLE= HASP
(,NOENTRY)

USER
(,NOENTRY)

END
DYNAMIC

ÊÍ

$ARMODE

52 z/OS V1R4.0 JES2 Macros

Data Definition Form

Search Key Form

TABLE=
Specifies the start (TABLE=HASP|USER|DYNAMIC) and end (TABLE=END) of
a BERT table.

TABLE=HASP
Specifies that this is a HASP table.

TABLE=USER
Specifies that this is a USER table.

TABLE=DYNAMIC
Specifies that this is a DYNAMIC table.

TABLE=END
Specifies that this is the end of the BERT table.

Note: If TABLE= is specified, all other operands are ignored.

CBTYPE=
Specifies the type of control block represented by this table entry. This may be
specified as JQE, CAT, WSCQ, or a 1-8 character user-defined type. Non-IBM
types should start with either a U or a V to avoid conflict with future IBM types.

NAME=
Specifies a 1-8 character name that represents the specific data within the
control block type (CBTYPE). The name must be unique within a control block
type. USER and DYNAMIC table entries may not use the same name as HASP
entries within the same CBTYPE. Non-IBM types should start with either a U or
a V to avoid conflict with future IBM types.

CBOFF=
Specifies the offset into the control block to which data from this entry should
be moved. CBOFF=* may be specified to indicate that the data should be
placed at the highest unused offset. To retrieve the offset and length that was
associated with this data at run time, use $DOGBERT ACTION=GETOFFSET,
with CBTYPE and NAME equal to CBTYPE and NAME from the table entry.

LEN=
Specifies the length of the data.

ÊÊ
label

$BERTTAB CBTYPE=xxxxxxxx, NAME=xxxxxxxx, CBOFF= xxxxxxxx
*,

Ê

Ê LEN=xxxxxxxx,
FILL= C’c’

X’xx’

ÊÍ

ÊÊ
label

$BERTTAB CBTYPE=xxxxxxxx, KEYOFF=xxxxxxxx, KEYLEN=xxxxxxxx, Ê

Ê
FILL= C’c’

X’xx’

ÊÍ

$BERTTAB

Chapter 3. JES2 Programmer Macros 53

KEYOFF=
Specifies the offset of the search key for this control block type.

Note: Only one search key entry may be specified for any control block type.

KEYLEN=
Specifies the length of the search key.

FILL=
Specifies the fill character for this data area. This parameter is optional, and the
default is X'00' for data entries and C’ ’ for search key entries.

Environment
v JES2 main task or initialization.
v $WAIT is not applicable; this macro defines a static table.

$BFRBLD – Construct a JES2 Buffer Prefix
Use $BFRBLD to construct an IOB or RPL in the front of a JES2 buffer. The IOB or
RPL is used to read into or write from the data portion of the buffer.

Format Description

buffer
Specifies the address of a buffer where the prefix (an IOB or an RPL) is to be
constructed. If an address is used, it specifies a word in storage containing the
buffer address.

If the notation is used, the buffer address must have been loaded into the
designated register before the execution of this macro instruction.

TYPE=
Identifies the type of buffer and specifies whether an IOB or RPL is to be
constructed at the beginning of the buffer, according to the type code as
follows:

HASP (default)
A local buffer; an IOB is to be constructed

BSC
A TP buffer; an IOB is to be constructed

PAGE
A local 4096-byte buffer; an IOB is to be constructed

PP
A local print/punch buffer; an IOB is to be constructed

Environment
v Main task.
v $WAIT cannot occur.

ÊÊ
symbol

$BFRBLD buffer-addrx
(R1) ,TYPE=type-code

ÊÍ

$BERTTAB

54 z/OS V1R4.0 JES2 Macros

$BLDMSG – Build a Message Line
JES2 provides a message building facility to allow you to replace an existing
$HASPnnn message or add a new $HASPnnn message. Use the $BLDMSG macro
to build and generate a message.

Use the $SCANTAB macro to define a message to the message table. $BLDMSG
then builds the specific message using the $SCAN facility, accessing the message
table.

Parameters to be coded depend on the macro form used:
v MF=I (in-line form)
v MF=L (list form)
v MF=E (execute form)
v MF=M (modify form).

$BLDMSG

Chapter 3. JES2 Programmer Macros 55

Format Description

MSGID=
Specifies a 3-digit JES2 message ID prefixed by $HASP. Optionally, you can
specify a suffix character to distinguish multiple definitions of the same
message number in the message table. You can specify these characters as
the operand, for example MSGID=273A, or you can specify register notation.

If you specify register notation, it must contain the address of the message ID
(left justified and padded with blanks if necessary). Register notation can be
used for macro forms execute (E), in-line (I), or modify (M). Register notation
may not be specified on the list macro form (L).

This keyword is valid for all macro forms; it is required for in-line or execute
(with the COMPLETE parameter specified or as the default) macro forms. The
last value that was set for this parameter will be used for the execute macro
form with the NOCHECK parameter specified or the modify macro form with the
NOINIT parameter specified (or as the default).

ÊÊ
symbol

$BLDMSG
,MSGID= nnn

c
(Rn)

Ê

Ê
WTO

,TYPE= WTOR
CMB

WAIT
(CMB, NOWAIT)

,CONID=conid ,CART= rx-addr
(Rn)

Ê

Ê
NO

,LOGONLY= YES
NO

,JOB= YES
rx-addr
(Rn)

,ECB= rx-addr
(Rn)

Ê

Ê
,REPLY= rx-addr

(Rn)
,REPLEN= rx-addr

(Rn)
,REPLYV= rx-addr

(Rn)

Ê

Ê
'.'

,SEPAR= 'c'
NULL

,DISPRTN=disprtn ,DISPER=disper
Ê

Ê
,CBADDR= rx-addr

(Rn)
I

,MF= L
(E, rx-addr)

(Rn) COMPLETE
, NOCHECK

(M, rx-addr)
(Rn) NOINIT

, INIT

Ê

Ê
NO

,LONG YES

ÊÍ

$BLDMSG

56 z/OS V1R4.0 JES2 Macros

TYPE=
Specifies the type of message this routine builds and writes.

For in-line and execute forms of the macro, WTO is the default type. Other
macro forms do not have a default.

WTO
Indicates a write to operator (WTO) message. The message is issued from
the JES2 main task. This is the default for the in-line or execute (with the
COMPLETE specified or as the default) macro forms. WTO can be
specified on all macro forms. The last value that was set for this parameter
will be used for the execute macro form with the NOCHECK parameter
specified or the modify macro form with the NOINIT parameter specified (or
as the default).

WTOR
Indicates a write to operator with response (WTOR) message. The
message is issued from the JES2 main task. WTOR cannot be specified on
the list macro form. If WTOR is specified, the ECB=, REPLY=, and
REPLEN= parameters are also required on the same macro instruction.

CMB
Indicates the message is built in CMBs (console message buffers) and is
passed to the $WTO service for processing. CMB can be specified on all
macro forms.

If the type CMB is specified, a second sub-operand, WAIT or NOWAIT, can
also be specified.

WAIT|NOWAIT
Indicates to the display routine whether (WAIT) or not (NOWAIT) to
$WAIT if a CMB is not available. WAIT indicates that the display routine
can $WAIT. NOWAIT indicates that a CMB should be obtained even if a
CMB is not available (when a processor cannot wait). For more
information about obtaining a CMB, see $GETCMB – Get Console
Message Buffers.

The default is WAIT.

Notes:

1. If you code TYPE=CMB or TYPE=(CMB,WAIT), exit 10, when it receives
control, is allowed to $WAIT.

2. During JES2 initialization, the default $BLDMSG display routine processes
TYPE=CMB as TYPE=WTO.

CONID=
Specifies the identifier of the console where the message is displayed. This
parameter may be specified using:

v A label for a field containing the console ID.

v A base-displacement expression that is the address of the console ID.

v Register notation (R2 through R12) to specify a register containing the
console ID.

It is valid for execute, in-line, and modify macro forms. The default is to omit the
console identifier for in-line or execute (with the COMPLETE parameter
specified or as the default) macro forms. The last value that was set for this
parameter will be used for the execute macro form with the NOCHECK
parameter specified or the modify macro form with the NOINIT parameter
specified (or as the default).

$BLDMSG

Chapter 3. JES2 Programmer Macros 57

CART=
Specifies the address of the command and response token to be used to issue
messages. This can be specified as an rx-addr expression or using register
notation (R2 through R12). It is valid for execute, in-line, and modify macro
forms. The default is to omit the token for in-line or execute (with the
COMPLETE parameter specified or as the default) macro forms. The last value
that was set for this parameter will be used for the execute macro form with the
NOCHECK parameter specified or the modify macro form with the NOINIT
parameter specified (or as the default).

LOGONLY=
Specifies whether (YES) or not (NO) a message is only logged in the hardcopy
log. If LOGONLY=NO is specified, the message appears on appropriate
consoles and in the hardcopy log.

This keyword is valid for all macro forms when used with the TYPE=WTO|CMB
parameter. The default is LOGONLY=NO for list, in-line or execute (with the
COMPLETE parameter specified or as the default) macro forms. The last value
that was set for this parameter will be used for the execute macro form with the
NOCHECK parameter specified or the modify macro form with the NOINIT
parameter specified (or as the default).

JOB=
Specifies whether the message is preceded by a job identifier. Specify one of
the following keywords:

YES
Specifies that field PCEJQE must contain the address of the JQE from
which the job ID is built.

NO
Specifies that no job ID will be placed to the left of the message ID.

rx-addr or (Rn)
Specifies the address of the job ID. This can be an rx-addr address
expression or register notation (R2-R12) containing the address of the eight
character job ID.

This keyword is only valid for TYPE=CMB. JOB= is valid for all macro forms,
however an address is not valid on list macro form. The default is JOB=NO for
list, in-line, and execute (with the COMPLETE parameter specified or as the
default) macro forms. The last value that was set for this parameter will be used
for the execute macro form with the NOCHECK parameter specified or the
modify macro form with the NOINIT parameter specified (or as the default).

ECB=
Specifies the address of an ECB to be used for WTOR processing. This can be
specified as an address expression or register notation (R2-R12).

This keyword is valid only if TYPE=WTOR is specified, and must be specified at
the same time TYPE=WTOR is specified. It is valid for execute, in-line, and
modify macro forms. The last value that was specified for this parameter will be
used for the execute macro form with the NOCHECK parameter specified or the
modify macro form with the NOINIT parameter specified (or as the default).

Note: The ECB is set to zero before the MVS WTOR is issued.

$BLDMSG

58 z/OS V1R4.0 JES2 Macros

REPLY=
Specifies the address of a response area for WTOR processing. This parameter
may be specified as an rx-addr address expression or using register notation
(R2 through R12).

This keyword is valid only if TYPE=WTOR is specified, and must be specified at
the same time TYPE=WTOR is specified. It is valid for execute, in-line, and
modify macro forms. The last value that was specified for this parameter will be
used for the execute macro form with the NOCHECK parameter specified or the
modify macro form with the NOINIT parameter specified (or as the default).

Note: The reply area is set to blanks before the MVS WTOR is issued.

REPLEN=
Specifies the length of the reply area specified by the REPLY= parameter. This
parameter may be specified as an rx-addr address expression or using register
notation (R2 through R12).

This keyword is valid only if TYPE=WTOR is specified, and must be specified at
the same time TYPE=WTOR is specified. It is valid for execute, in-line, and
modify macro forms. The last value that was set for this parameter will be used
for the execute macro form with the NOCHECK parameter specified or the
modify macro form with the NOINIT parameter specified (or as the default).

REPLYV=
Specifies the address of a reply vector (generated with a $REPLYV macro
instruction). The reply vector contains valid replies for this WTOR and an
associated A-type address constant for each valid reply. The REPLYV=
parameter may be specified as an rx-addr address expression or using register
notation (R2 through R12).

The reply vector can be generated using the $REPLYV macro. If specified, this
macro does not return until a valid reply to the WTOR is entered by the
operator. If a non-valid reply is issued, a $HASP299 message is issued and the
WTOR is re-issued.

The value of the A-type address constant associated with the reply is returned
in R1 if the return code in R15 is zero.

This keyword is only valid if TYPE=WTOR is specified.

It is valid for execute, in-line, and modify macro forms. The last value that was
set for this parameter will be used for the execute macro form with the
NOCHECK parameter specified or the modify macro form with the NOINIT
parameter specified (or as the default).

SEPAR=
Specifies the separator character that is to be used between fields when the
message is displayed. Specify one character enclosed within single quotes or
the word NULL. NULL indicates no separator. (Refer to the SEPAR= keyword
on the $SCAN macro for further information.)

‘,’ Indicates a comma is used as the message segment separator character.

‘c’ Indicates that the character specified will be used as the separator
character. You must code the single quotes.

NULL
Indicates that no separator character is used.

This keyword is valid for all macro forms. The default is SEPAR=‘,’ for list,
in-line or execute (with the COMPLETE parameter specified or as the default)

$BLDMSG

Chapter 3. JES2 Programmer Macros 59

macro forms. The last value that was set for this parameter will be used for the
execute macro form with the NOCHECK parameter specified or the modify
macro form with the NOINIT parameter specified (or as the default).

DISPRTN=
Specifies a value for an address of the routine to which $SCAN gives control to
display each line of the message. If this keyword is not specified, the
$MSGDISR routine in module HASPMSG receives control. This keyword may
be specified as one of the following values:

v The name of the routine (as on a $CALL).

v Register notation (R2 through R12). This specifies a register containing the
routine address.

v A literal value to load as the routine address.

v A local label that is at the beginning of a local routine.

If you supply your own display routine, it is up to your display routine to process
the $BLDMSG operands set in the $BLDMSGL parameter list and to determine
the route and descriptor codes from the high-level $SCANTAB.

This keyword is valid for execute, in-line, and modify macro forms. The last
value that was set for this parameter will be used for the execute macro form
with the NOCHECK parameter specified or the modify macro form with the
NOINIT parameter specified (or as the default).

DISPER=
Specifies a display identifier. This identifier is supplied to the $SCAN macro to
determine if a message segment will be constructed. (Refer to the DISPER=
keyword on the $SCAN macro for further information.) This parameter may be
specified in one of the following ways:

v A label for a field containing the display ID byte.

v A literal value that specifies the display ID byte.

v Register notation (R2 through R12). The register contains the display ID in
the low-order byte.

It is valid for execute, in-line, and modify macro forms. The last value that was
set for this parameter will be used for the execute macro form with the
NOCHECK parameter specified or the modify macro form with the NOINIT
parameter specified (or as the default).

CBADDR=
Specifies a control block address to be used by $SCAN. This parameter may
be specified as an rx-addr address expression or using register notation (R2
through R12).

It is valid for execute, in-line, and modify macro forms. The default is to omit the
control block address for the in-line or execute (with the COMPLETE parameter
specified or as the default) macro forms. The last value that was set for this
parameter will be used for the execute macro form with the NOCHECK
parameter specified or the modify macro form with the NOINIT parameter
specified (or as the default).

MF=
Specifies the macro form. Specify one of the following forms:

I Indicates the in-line form of the macro.

Use the in-line macro form (MF=I) to obtain storage, build an in-line
parameter list and invoke a service to issue the message.

$BLDMSG

60 z/OS V1R4.0 JES2 Macros

L Indicates the list form of the macro.

Use the list macro form (MF=L) together with the execute form (MF=E) of
the macro for applications that require reentrant code. The list form defines
an area of storage that the execute form uses to set the parameters.

E Indicates the execute form of the macro.

Use the execute macro form (MF=E) together with the list form of the macro
for applications that require reentrant code. The execute form sets the
parameters, stores them into the area defined by the list macro form, and
invokes a service to issue the message.

rx-addr or (Rn)
Specifies the address of the storage defined by the list (L) macro form.
The list form address may be specified as an rx-addr expression or
register notation (R1 through R12).

Optionally, you can specify additional keywords. The keyword values and
their meanings are:

COMPLETE | NOCHECK
Specifies whether $BLDMSG should check for required parameters and
supply defaults for omitted optional parameters (COMPLETE), or
whether $BLDMSG should not check for required parameters and
should not supply the omitted optional parameters (NOCHECK). The
default is COMPLETE.

M Indicates the modify form of the macro.

Use the modify form (MF=M) of the macro to modify an already defined
$BLDMSG parameter list.

rx-addr or (Rn)
Specifies the address of a list (L) macro form parameter list. The list
form address may be specified as an address expression or register
notation (R1 through R12).

Optionally, you can specify additional keywords. The keyword values and
their meanings are:

INIT | NOINIT
Specifies whether to initialize (INIT) or not (NOINIT) the $BLDMSG
parameter list to the list macro form defaults before setting parameter
values. The default is NOINIT.

LONG=
Specifies whether (YES) or not (NO) JES2 will issue the long form of the
message. The long form of a message is defined by specifying
’DISPALL=LONGONLY’ on the $SCANTAB macro for certain parts of the
message. The text or value represented by $SCANTAB is displayed in
addition to the text for the short form of the message.

Register Contents When $BLDMSG is Invoked
Register Contents
0-10 Not applicable
11 HCT base address
12 Not applicable
13 PCE base address
14-15 Not applicable

$BLDMSG

Chapter 3. JES2 Programmer Macros 61

Register Contents on Exit from $BLDMSG
Register Contents
0 Unpredictable
1 The value can be one of the following:

v DOMID if WTO or WTOR

v the address of the REPLY processing data if REPLYV= was
specified

v Unpredictable
2-13 Unchanged
14 Unpredictable
15 Return code.

Return Codes
The following return codes (decimal) are returned in register 15.

Return Code Meaning
0 Processing successful (no errors)
4 Indicates that SCAN found an obsolete keyword (as indicated by a

$SCANTAB entry specifying OBS=YES).
8 Indicates that SCAN found a keyword not supported in the tables.
12 Indicates that SCAN encountered scanning errors (for example,

non-valid syntax) that could not be resolved.

Usage Notes
1. MSGID= must be specified on a list or modify macro form before using the

execute macro form with the NOCHECK parameter specified.

2. TYPE= must be specified on a list or modify macro form before using the
execute macro form with the NOCHECK parameter specified.

3. REPLY=, REPLEN=, and ECB= are required with TYPE=WTOR, and these
parameters must be coded on the same macro form.

4. If you code $BLDMSG in an exit, you must also specify the parameter list
DSECT ($BLDMSGL) on the $MODULE macro instruction.

5. If you have coded a USING statement for symbol BLD, issue a corresponding
DROP statement before coding the $BLDMSG macro.

Environment
v JES2 main task or during JES2 initialization or termination.
v $WAIT can occur.

$BLDQC – Call the Quick Cell Build/Extend Routine
Use $BLDQC to call the quick cell build/extend routine to build or extend a quick
cell pool.

Format Description

TYPE=
Specifies the type of quick cells to build.

ÊÊ
symbol

$BLDQC TYPE= type-code
(R0)

ÊÍ

$BLDMSG

62 z/OS V1R4.0 JES2 Macros

type-code
specifies the type code as defined in the $QCTGEN macro for the quick-cell
type to build. Quick cell types are defined as one of the following:

Type-Code Meaning

SAVE Standard save area for MVS linkage conventions as
described in z/OS MVS Programming: Assembler Services
Guide

JIB JOE information block

BUF Standard 4K buffer

RPL Request parameter lists for GETDS processing

GETRC Control block areas for GETRC processing

(R0)
Specifies the register that contains the type-code; if coded, be certain that
the two low-order bytes of the register contain the quickcell type-code as
defined in the $QCTGEN macro; the two high-order bytes must be zeroed.

The TYPE= keyword must be specified.

Environment
v Functional subsystem (HASPFSSM).
v MVS WAIT can occur.

$BLDTGB – Queue TGBs to the HASPOOL Processor
Use $BLDTGB to build track group blocks (TGBs) and queue them off the
$SPOOLQ in the HCT. The TGB represents a bad track group for which the
HASPSPOL processor attempts recovery.

Format Description

ADDR=
Specifies the address of the track group map (TGM) that contains bad track
groups or the MTTR (JES2 spool track address) of a single bad track group.

ID=
Specifies whether the ADDR= keyword specifies a TGM or MTTR.

Environment
v Main task.
v $WAIT cannot occur.

$CALL – Call a Subroutine from JES2
Use $CALL to call a subroutine from a JES2 module. Note that $CALL will attempt
to branch to a global routine before attempting to branch to a local one. Therefore,
ensure that, if you have defined two routines with the same name, your routine
branches to the desired one.

ÊÊ
symbol

$BLDTGB ADDR=addrx ,ID= TGM
MTTR

ÊÍ

$BLDMSG

Chapter 3. JES2 Programmer Macros 63

Format Description

arg-addr
Use 'arg-addr' to specify one of the following arguments (JES2 will search for
and process these arguments in the order listed):

1. A register containing an address to which this macro will branch. (If register
notation is used, the designated register must contain the address of the
subroutine to be called before executing $CALL.)

2. The name (label) of a routine listed in one of the following tables:

Table Address Prefix
CADDR C@
PADDR P@
UCADDR UC@
UPADDR UP@

JES2 will search through the tables in the above order.

Notes:

a. The UPADDR is chained out of $UPADDR in the $HCT.

b. The UCADDR is chained out of the CCTUCADD in the $HCCT.

3. A label pointing to either:

v A name (label) of a local routine this macro will call; this causes $CALL to
generate an ADCON.

v A label of a field containing the address of a routine this macro will call

4. The name of a routine contained in another module; this causes $CALL to
generate a VCON.

LINKAGE=
Specifies the assembler instruction (RR-type) to use for this $CALL. The default
is BASR.

LINK1=
Specifies the register to be used as the first operand (that is, R1) on the BASR
(branch and save registers) assembler instruction. This register provides linkage
to the called routine. R14 is the default or R0 is the default if LINKAGE=BAKR.

ÊÊ
symbol

$CALL arg-addr
,ERRET= addrx

(Rn)

Ê

Ê
,INLINE=(dc1)

,dc2,dc3...,dcn
BASR

,LINKAGE= rr_inst

Ê

Ê
R14

,LINK1= (Rn)
R15

,LINK2= (Rn)
,PARM=adval
,PARM1=adval

Ê

Ê
,PARMC=comment ,PARM0=adval ,PARM0C=comment

Ê

Ê
,OKRET= addrx

(Rn)

ÊÍ

$CALL

64 z/OS V1R4.0 JES2 Macros

LINK2=
Specifies the register to be used as the second operand (that is, R2) on the
BASR (branch and save registers) assembler instruction. This register provides
linkage to the called routine. R15 is the default.

PARM= | PARM1=
Specifies a parameter value that is to be passed to the called subroutine
through register 1. You can only use a register, label, or assembler literal
address. If you use register notation, the designated register must contain the
address of the parameter value.

PARM0=
Specifies a parameter value that is to be passed to the called subroutine
through register 0. You can only use a register, label, or assembler literal
address. If you use register notation, the designated register must contain the
address of the parameter value.

PARMC=
Specifies the assembler comment that JES2 passes to the decoding routine
when processing the PARM= or PARM1= value.

PARM0C=
Specifies the assembler comment that JES2 passes to the decoding routine
when processing the PARM0= value.

INLINE=
Specifies the operands that comprise an inline parameter list. For example:
,INLINE=(AL4(USER),B’&FLAG’,CL4’PARM’)

specifies the following inline parameter list:
DC AL4(USER)
DC B’&FLAG’
DC CL4’PARM’

Note: &FLAG will be substituted if the variable is defined.

ERRET=
Specifies the register (2-12) or address of the error routine that is to receive
control if a nonzero return code is returned in R15.

OKRET=
Specifies the address of the routine that is to receive control when JES2 passes
back a zero return code in R15.

Programming Considerations
$CALL linkage is determined by the LINKAGE= parameter. If you use register
notation to specify the arg-addr parameter (that is, $CALL (Rx)) and you invoke
$CALL in AMODE 24, be certain the high-order byte of this register doen not
contains data.

Environment
v Main task, subtask, FSS, and user address space.
v $WAIT can occur depending on the routine that is called.
v Callers in AR ASC mode are supported. For PARM0= and PARM1=, the

appropriate access registers are set if ASC mode is not primary.

$CALL

Chapter 3. JES2 Programmer Macros 65

$CBIO – Control Block I/O Routine
Use $CBIO to access the control block I/O ($CBIO) service routine to perform I/O
for JES2 control blocks.

Note: The caller must hold the SJB lock and cannot hold any other MVS lock. The
address of the SJB must be in register 10 prior to calling $CBIO, unless you
specify the SJB= or SJIOB= keywords on the $CBIO macro.

Format Description

TYPE=
Specifies the type of I/O operation that is to be performed. This is a required
parameter.

READ
Indicates this is an I/O read.

WAIT
Waits for the completion of a $CBIO request that specified WAIT=NO.

In a JES2 environment, when a $CBIO TYPE=READ or TYPE=WRITE
request is made with WAIT=NO, verification processing and buffer
management occurs when the I/O completes. No additional code is required
of the caller of $CBIO. However, in a non-JES2 environment, this
processing cannot be done automatically. In this case, a $CBIO
TYPE=WAIT is needed to wait for the I/O to complete and then perform the
required verification and buffer management. Therefore, TYPE=WAIT is only
valid in a non-JES2 environment.

ÊÊ
symbol

$CBIO TYPE= READ
WAIT

WRITE
(,COND)

,BUFAD= WRITE
READ

Ê

Ê ,MTTR= label
(Rn)

,VERIFY= cb-id
NONE
(Rn)

YES
,EXIT= NO

Ê

Ê
,STORPTR=cb-label,SPOLPTR=cb-label

Ê

Ê
,CKPTFLD=cb-label,CKPTBIT=cb-label ,ERRET= addrx

(Rn)

Ê

Ê
,OKRET= addrx

(Rn)
NO

,FREE= YES
,JOBMASK=mask

Ê

Ê
,KEY= field

(Rx)
,SJB= addrx

NO
,SJI0B=addrx

,WAIT= YES
NO

Ê

Ê JQE= NONE
address
offset

ÊÍ

$CBIO

66 z/OS V1R4.0 JES2 Macros

If WAIT=NO is specified in a non-JES2 environment, a $CBIO TYPE=WAIT
call may be needed to complete verification of the control block and to
perform any needed buffer management (including any error processing).

Note: For TYPE=WAIT, the parameters BUFAD=, MTTR=, VERIFY=,
KEY=, STORPTR=, SJB=, WAIT=, FREE=, SPOLPTR=,
JOBMASK=, CKPTFLD=, and CKPTBIT= are not valid. The values
specified on the TYPE=WRITE or TYPE=READ are used. SJIOB= is
required if TYPE=WAIT.

WRITE
Indicates this is an unconditional I/O write.

(WRITE,COND)
Indicates this is a conditional I/O write. That is, JES2 writes a control block
only if the checkpoint bit (BUFM1CKP bit in byte BUFMFLG1) is on.

Specifying COND is mutually exclusive with the CKPTFLD and CKPTBIT
parameter pair.

BUFAD=

WRITING THE BUFFER (TYPE=WRITE)
Specifies the label of, or a register that contains, the address of the
input/output block (IOB) that corresponds to the buffer that is to be written
to SPOOL. For TYPE=WRITE, you must specify BUFAD= on the $CBIO
macro.

READING THE BUFFER (TYPE=READ)
Specifies the label of, or a register that contains, the address of the
input/output block (IOB) that corresponds to the buffer that is to be read
from SPOOL. For TYPE=READ, specifying BUFAD= is ″optional″ on the
$CBIO macro. If you do NOT specify BUFAD= or specify BUFAD=0, then
the $CBIO routing gets the buffer for you and puts its address into register
1 when it returns control. BUFAD is not allowed with TYPE=WAIT.

Note: Whether writing or reading the buffer:

1. If you specify a register for BUFAD=, the address of the IOB must be
loaded into this register before executing the $CBIO macro.

2. When your I/O operations are complete, you are responsible for
″freeing″ the buffer you have used for your $CBIO operations. This is
normally accomplished with the $FREEBUF macro. For more
information on the $FREEBUF macro see $FREEBUF – Return a
JES2 Buffer to the JES2 Buffer Pool.

MTTR=
Specifies the label of, or a register that contains, the spool track address of the
record to be read or written. If you specify a register, the spool MTTR (module
track record) must be loaded into the designated register before executing this
macro instruction. MTTR is required for TYPE=READ or TYPE=WRITE, but is
not allowed with TYPE=WAIT.

VERIFY=
Specifies the control block identifier (cb-id) or a register that contains the
address of the cb-id that is used to validate the control block passed to Exit 7 or
8. Specify the cb-id as a 4-byte EBCDIC value. If you specify NONE, JES2 will
not verify the control block after the read; however, job key validation should be
done. VERIFY is required if TYPE=READ or TYPE=WRITE, but is not allowed
with TYPE=WAIT.

$CBIO

Chapter 3. JES2 Programmer Macros 67

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

EXIT=
Specifies whether (YES) or not (NO) this macro instruction will call $EXIT7 or
$EXIT8. EXIT=YES is the default.

Note: Because you can use this macro instruction in an installation-defined
exit, and $CBIO calls Exit 8, you can use this keyword to allow or
disallow recursive exit calls, as required.

STORPTR=
Specifies the offset of the chaining field that is used to perform a series of
control block I/Os. For example, use this keyword if you need to write an entire
IOT chain to spool. If you do not specify STORPTR=, only a single buffer (as
specified by MTTR=) is either read or written. If STORPTR= is specified,
SPOLPTR= is also required. The default for STORPTR is a null value
(unspecified). STORPTR is not allowed with TYPE=WAIT. Blocks are written in
the reverse order of the chain, that is, they are written from the newest to the
oldest. If A points to B points to C, then the blocks are written in the order CBA.

SPOLPTR=
Specifies the offset of the field that is used to obtain the MTTR for a series of
control block I/Os. For control block READ it is the offset of the field that
contains the MTTR of the next control block. For control block WITE it is the
offset of the field that contains the MTTR of the current control block. For
example, use this keyword if you need to write an entire IOT chain to spool. If
SPOLPTR is not specified, only the single control block identified by MTTR= will
be used. The default for SPOLPTR is a null value (unspecified). If STORPTR=
is specified, SPOLPTR= is also required. SPOLPTR is not allowed with
TYPE=WAIT.

CKPTFLD=
Specifies the offset into the buffer that is used to determine if this buffer is to be
checkpointed. The bit (as specified by CKPTBIT=) must be set to one before
writing the buffer to spool, if checkpointing is required. If the bit is not set on,
and a chain of writes is not requested, $CBIO will not write this buffer to spool.
If the bit is not set on and a chain of writes is requested, $CBIO will not write
this buffer to spool and will check the next buffer (as pointed to by STORPTR=).
If TYPE=WRITE and CKPTFLD was not specified, the buffer, or chain of
buffers, will be unconditionally written. However, if CKPTFLD was specified,
whether or not the buffer is written depends on the setting of CKPTBIT. If
CKPTFLD= is specified, CKPTBIT= is required.

Specifying CKPTFLD is mutually exclusive with TYPE=(WRITE,COND).

CKPTBIT=
Specifies the bit to be checked in the field specified by CKPTFLD=. If this bit is
set to one, the buffer is written to spool; if this bit is set to zero, the buffer is not
written to spool. If CKPTFLD= is specified, CKPTBIT= is required.

Specifying CKPTBIT is mutually exclusive with TYPE=(WRITE,COND).

ERRET=
Specifies the label of, or a register that contains, the address of a routine that
receives control if the I/O operation was unsuccessful (that is, if register 15
contains a nonzero return code). A chain of control blocks will not be written if
an error is encountered during the I/O for that chain. ERRET= is optional, and
either a label or register notation may be used to specify the error routine
address.

OKRET=
Specifies the address of the routine that is to receive control when the I/O

$CBIO

68 z/OS V1R4.0 JES2 Macros

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

operation is successful (register 15 contains 0). You can specify a label that
corresponds to the routine’s address or a register that contains the address of
the routine.

FREE=
Specifies whether or not the buffer should be freed after it is written, or after an
error occurred. The default is NO. FREE= is mutually exclusive with
TYPE=WAIT.

JOBMASK=
Specifies the job mask that will be used when calling exit 7. The job mask
determines whether the exit can be taken for a particular job. If no job mask
was specified, the exit will be taken without one. If the JCT is being read in, the
job mask will be taken from this JCT. FREE= is mutually exclusive with
TYPE=WAIT.

JQE=
Specifies one of the following:
v Offset of the JQE
v Label or register that contains the address of the JQE
v NONE - which indicates that there is no related JQE for this I/O operation.

If you do not specify a value here, JES2 uses the JQE address contained in the
PCEJQE.

JQE= is only valid in the JES2 environment.

KEY=
Specifies the key field of the control block that will be verified by $VERIFY. If a
register is used, it must contain the address of the field. If a key is not specified,
only the control block identifier will be used to verify the control block. KEY= is
mutually exclusive with TYPE=WAIT.

SJB=
Specifies either the address of the SJB, or NO. NO indicates that no SJB was
specified, and the default (SJB address in register 10) is not to be used. If
neither an SJB nor an SJIOB is specified, an SJIOB will be obtained and
initialized. This parameter is used in the user environment only. SJB= is
mutually exclusive with TYPE=WAIT.

SJIOB=
Specifies the address of the SJIOB. If specified, the SJIOB address will be
loaded into register 10 and the SJB parameter will be ignored. This parameter
is used in the user and subtask environments only.

WAIT=
Specifies whether or not the $CBIO service routine is to cause the caller to wait
until the I/O operation completes (WAIT=YES). If not (WAIT=NO), control
returns to the caller.

Register Contents When $CBIO is Invoked
Register Contents
0-10 Not applicable
11 HCT/HCCT/HFCT base address - as appropriate
12 Not applicable
13 PCE/Save area address - as appropriate
14-15 Not applicable

$CBIO

Chapter 3. JES2 Programmer Macros 69

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

Register Contents on Exit from $CBIO
Register Contents
0 Unchanged
1 READ - Address of buffer. If there was more than one READ

operation, the register contains the address of the first buffer read.

WRITE - unchanged
2-9 Not applicable
10 User environment - SJB or SJIOB

JES2 environment - not applicable
14 Return address
15 Return code

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing completed successfully.
4 Processing failed because the control block was not valid.
8 Processing failed due to an I/O error.
12 Processing failed because the track address was not valid.
16 Processing failed because:

READ - JES2 was unable to obtain a buffer

WRITE - no buffer was passed to the $CBIO service
20 Processing failed because the caller did not hold the subsystem

SJB lock. (Applicable in the user environment only.)
24 Processing failed because the control block read is of an

unidentifiable type. JES2 could not verify the control block(s).
28 Processing failed because JES2 could not obtain storage for the

SJIOB. (Applicable in the user environment only.)
32 Processing failed because the buffer does not have a valid buffer

address table (BAT) entry. (Applicable in the JES2 maintask or
subtask environment only.)

Environment
v JES2 main task, JES2 subtask, and user environment.
v $WAIT can occur.
v MVS WAIT will occur in user environment.

$CFSEL – Select Label to Process a Command Operand String
$CFSEL is intended for use with the JES2 Exit 5 command preprocessor.

$CFSEL compares a command operand string to a set of one or more
specifications, called string-selectors, that you provide. If one of the string-selectors
matches the command operand, $CFSEL branches to the label specified on that
string-selector. If none of the string-selectors match the command operand string,
$CFSEL branches to another label, or if no label is provided, processing continues
at the instruction following $CFSEL.

$CBIO

70 z/OS V1R4.0 JES2 Macros

Format Description

string-selector
The string-selector is a required positional parameter. You must code one or
more string-selectors. Each string-selector provides specifications for the
command operand string and a label to which $CFSEL is to branch if the
command operand string matches the specifications. The command operand
string is explained under the description of the OPERAND= parameter. There
are three forms of the string-selector:

('string',label)
('string',label,min-residual,max-residual)
('string',label,EXACT)

A string-selector must define a character string, 'string', and a label.
Optionally, a string-selector can also define a length specification. You
define a length specification by coding min-residual and max-residual, or by
coding EXACT.

Starting with the first string-selector, $CFSEL compares each string-selector
to the command operand string. The first string-selector that matches
causes $CFSEL to branch to the label specified on that string-selector.
$CFSEL ignores any remaining string-selectors. For a string-selector to
match a command operand string:

v 'string' must match a like number of characters in the command operand
string beginning with the character pointed to by the OPERAND=
parameter.

v If the command operand string contains residual characters, they must
satisfy any length specification coded on the string-selector. Residual
characters are those characters in the command operand that follow the
characters that are compared to 'string'. For example, if the command
operand contains Q=ABCD and 'string' is specified as 'Q=', the
characters ABCD are residual characters.

If none of the string-selectors match the command operand string, $CFSEL
branches to the address specified on the NOMATCH= parameter. If that
parameter is omitted, control returns to the instruction following $CFSEL.

'string'
The character string that $CFSEL compares to the command operand string
pointed to by the OPERAND= parameter. The string must be enclosed in
single quotes and must follow the rules for character constants. The length
of the string must not exceed 255 characters.

This parameter is required and has no default.

label
The label of the instruction where $CFSEL is to branch if the string-selector
matches the command operand string. The label name must be valid for
use as an A-type address constant.

This parameter is required and has no default.

ÊÊ
symbol

$CFSEL string-selector
,string-selector,...

Ê

Ê
,NOMATCH=rx-addr

,OPERAND= rx-addr
(Rn)

,OPTABPT= rx-addr
(Rn)

ÊÍ

$CFSEL

Chapter 3. JES2 Programmer Macros 71

min-residual
Specifies the minimum number of residual characters that the command
operand string must contain. min-residual can be any value from 0 through
255.

The default value is 0.

min-residual is mutually exclusive with EXACT.

max-residual
Specifies the maximum number of residual characters that the command
operand string may contain. max-residual can be any value from 0 through
255.

The default value is 255.

max-residual is mutually exclusive with EXACT.

EXACT
Specifies that 'string' must exactly match the characters in the command
operand string and that the command operand string must contain no
residual characters. Coding EXACT is the equivalent of coding 0 for both
min-residual and max-residual.

EXACT is mutually exclusive with min-residual and max-residual.

There is no default value. If you omit EXACT, the min-residual and
max-residual default values apply.

NOMATCH=
Specifies the address, in the form of an RX-type address, that is to receive
control if none of the string-selectors match the command operand string. If you
omit this parameter and none of the string selectors match the command
operand string, control returns to the instruction following $CFSEL.

OPERAND=
Points to the command operand string that $CFSEL is to compare to each
string-selector. The OPERAND= parameter can specify an RX form of address
or can use register notation (R1-R12).

v If you specify an RX form of address, OPERAND= points to a full-word that
points to the command operand string,

v If you use register notation, the specified register points to the command
operand string. Register notation requires that the register contain the
address of the command operand string at the time you issue $CFSEL.

This parameter is required and has no default.

The register specified by OPERAND=, or the full-word that is pointed to by
OPERAND= points to the first character of the command operand string. The
command operand string includes that character and all following characters to
either the next comma that is not enclosed in a quoted string or, if there is no
comma, to the end of the command.

The following examples show how $CFSEL interprets the command operand
string.

1. If the command contains $O Q,Q=A,CANCEL and
v If OPERAND= points to the character Q, the command operand string

consists of the characters Q=A.

v If OPERAND= points to the first character C in CANCEL , the command
operand string consists of the characters CANCEL .

$CFSEL

72 z/OS V1R4.0 JES2 Macros

2. If the command contains $DMR5,’HELLO, EVERYONE’

v If OPERAND= points to the first R, the command operand consists of the
characters R5.

v If OPERAND= points to the first character ’, the command operand string
consists of the characters ’HELLO, EVERYONE’ .

Attention: The command operand string must be at the address it occupied
when it was parsed by JES2. If you move the command operand string before
you invoke $CFSEL, $CFSEL will not work correctly.

OPTABPT=
Points to the current entry in the command operand pointer table that JES2
provides to exit 5. You can use an RX form of address or use register notation
(R1-R12).

v If you specify an RX form of address, OPTABPT= points to a full-word that
points to the current entry in the command operand pointer table.

v If you use register notation, the specified register points to the current entry
in the command operand pointer table. Register notation requires that the
register contain the address of the command operand pointer table at the
time you issue $CFSEL.

This parameter is required and has no default.

Register Contents When $CFSEL is Invoked
Register Contents
0-10 Not applicable
11 HCT base address
12 Not applicable
13 PCE base address
14-15 Not applicable

Register Contents on Exit from $CFSEL
Register Contents

0 Unpredictable

1 Points to the command operand string identified by the OPERAND=
parameter.

2-13 Unchanged

14 If there is a match with a string selector, the address where
$CFSEL will branch, otherwise zero.

15 If the command operand string matched one of the string-selectors,
R15 contains the length of the matching string. Otherwise, R15
contains zero.

Return Codes
None. Register 15 contains the results.

Usage Notes
1. The command operand string (specified with OPERAND=) will not match if its

length (computed from the OPTABPT= parameter) exceeds 255 characters.

$CFSEL

Chapter 3. JES2 Programmer Macros 73

2. The length of the matching string, or zero if no match, is set in R15 on exit from
this macro. This length value is also returned in the COMSSLEN field in the
command processor PCE.

3. JES2 returns the residual character length in the COMSRLEN field of the
command processor PCE:

v If one of the string-selectors results in a successful match, the residual
character length is the length of the command operand string minus the
length of the 'string' that compared successfully to the command operand
string.

v If none of the string-selectors result in a successful match, the residual
character length is the length of the command operand string.

4. This macro must execute under a command processor PCE. This macro also
assumes the command operand input string is part of a JES2 command that the
JES2 command processor parsed.

Environment
v JES2 main task under a command processor PCE only.
v $WAIT cannot occur.

Examples
The following examples show various forms of string-selectors and the results when
they are matched with specific command operand strings. The last example
contains a code segment that shows exit 5 logic and structure when $CFSEL is
used. The last example also shows how to code multiple string-selectors.

Example 1
This string-selector matches on Q=anything. The command operand string can
contain from 0 to 255 residual characters. If this string-selector is the first to match,
$CFSEL branches to label CLASSRTN.
$CFSEL (’Q=’,CLASSRTN),...

Command Operand String Result of Comparison

Q= Matches

Q=A Matches

Q=AB Matches

Q=ABCDEFGHIJ Matches

Example 2
This string-selector matches on Q=x where x is any single character. The command
operand string must contain one residual character and no more. If this
string-selector is the first to match, $CFSEL branches to label CLASSRTN.
$CFSEL (’Q=’,CLASSRTN,1,1),...

Command Operand String Result of Comparison

Q= Does not match because the command operand
string fails the minimum length specification for
residual characters: there are no residual
characters.

Q=A Matches

Q=AB Does not match because the command operand

$CFSEL

74 z/OS V1R4.0 JES2 Macros

string fails the maximum length specification for
residual characters: there are two residual
characters, AB

Example 3
This string-selector matches on Q=x where x is any character string one to sixteen
bytes long. The command operand string must contain from 1 to 16 residual
characters. If this string-selector is the first to match, $CFSEL branches to label
CLASSRTN.
$CFSEL (’Q=’,CLASSRTN,1,16),...

Command Operand String Result of Comparison

Q= Does not match because the command operand
string fails the minimum length specification for
residual characters: there are no residual
characters.

Q=1 Matches

Q=12 Matches

Q=123456789ABCDEFG Matches

Q=123456789$ABCDEF# Does not match because the command operand
string fails the maximum length specification for
residual characters: there are 17 residual
characters, 123456789$ABCDEF#

Example 4
These string-selectors match when the command operand string contains only the
string CANCEL . The command operand string can contain no residual characters. If
one of these string-selectors is the first to match, $CFSEL branches to label
CANRTN.
$CFSEL,(’CANCEL’,CANRTN,EXACT),...

—or—
$CFSEL (’CANCEL’,CANRTN,0,0),...

Command Operand String Result of Comparison

CANCE Does not match because the command operand
string does not contain the string CANCEL .

CANCEL Matches

CANCELQ=M Does not match because the command operand
string contains the residual characters, Q=M

Example 5
This string-selector matches when the command operand string contains the
character string DEVICE= and that string is followed by at least one more character
but no more characters than the assembler assigned length of the label DCTDEVN.
If the string-selector matches, $CFSEL branches to label DEVSET.
$CFSEL (’DEVICE=’,DEVSET,1,L’DCTDEVN),...

Example 6
This example shows an order dependency because the first string selector is a
subset of the second string-selector. The first selector string matches and $CFSEL
branches to DFORMRTN if the command operand string contains the string

$CFSEL

Chapter 3. JES2 Programmer Macros 75

FORM=****. The second selector string matches and $CFSEL branches to DEVSET
if the number of characters following FORM= in the command operand string is a
minimum of 1 and a maximum of the assembler assigned length of JOEFORM.
$CFSEL (’FORM=****’,DFORMRTN,EXACT),

(’FORM=’,DEVSET,1,L’JOEFORM),...

Example 7
This example shows how an exit 5 routine might use $CFSEL. The example
assumes the following register values:

R5 - Pointer to operand table entry for current operand
R6 - Contains 4 (increment for BXH or BXLE)
R7 - Pointer to operand table entry for last operand

...
NEXTOP BXH R5,R6,DONE Get next operand, if none, branch to done

L R2,0(,R5) Address of next operand
$CFSEL (’DOIT=Y’,DORTN,EXACT), Select routine

(’DOIT=YES’,DORTN,EXACT),
(’DOIT=N’,DONTRTN,EXACT),
(’DOIT=NO’,DONTRTN,EXACT),
(’NAME=’,NAMERTN,1,L’XYZNAME),
NOMATCH=INVORTN, Handle an operand that does not match
OPERAND=(R2), Points to operand
OPTABPT=(R5) Operand table entry

DORTN DS 0H Process DOIT=Y|YES
...
B NEXTOP Loop for next operand

DONTRTN DS 0H Process DOIT=N|NO
...
B NEXTOP Loop for next operand

NAMERTN DS 0H Process NAME=value
AL R2,COMSSLEN Point to value
L R3,COMSRLEN Get length of value
...
B NEXTOP Loop for next operand

INVORTN DS 0H Handle case where operand does not match
...

DONE DS 0H No more operands
...

$CHECK – Check for Completion of a Checkpoint Write
Use $CHECK to check for the completion of a specific checkpoint write. You can
identify the write by a specific checkpoint identifier (token) associated with each
write, and based on the status of that write:

v $WAIT for a resource (CKPTP) indicating I/O is scheduled but not completed

v $WAIT for a resource (CKPT) indicating that the I/O is not yet scheduled

v Return control immediately to the caller indicating that the I/O is already
completed

$CFSEL

76 z/OS V1R4.0 JES2 Macros

Format Description

CKPTID=
Specifies the address or register where the address of the 4-byte identifier
(token) is stored when returned by the $CKPT service routine. (Refer to the
$CKPT macro, below, for obtaining this token.) If register notation is used, the
address of the checkpoint ID must be loaded into the designated register before
executing this macro instruction. This keyword is required.

Note: If an invalid token is specified, $CHECK will issue a $ESTAE and a
$ERROR, and attempt recovery by waiting for the next scheduled
checkpoint write.

INHIBIT=
Specifies whether the $WAIT that is issued by this macro will allow the
processor issuing this macro to be immediately dispatched if specifically
POSTed ($POST).

YES
The $WAIT is inhibited (not) to be $POSTed.

NO
The $WAIT is to be $POSTed.

,WAIT=YES|NO
Specifies whether (YES) or not (NO) to wait for the checkpoint write.
WAIT=YES is the default.

CAUTION:
If WAIT=NO is specified, INHIBIT= has no meaning and must not be
specified.

The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 Checkpoint write completed (return to caller)
4 Checkpoint write not completed.

Note: If INHIBIT=YES is specified, JES2 will not return an RC=4.

Environment
v Main task.
v $WAIT can occur.

ÊÊ
symbol

$CHECK CKPTID= addrx
(Rn) YES

,INHIBIT= NO

Ê

Ê
YES

,WAIT= NO

ÊÍ

$CHECK

Chapter 3. JES2 Programmer Macros 77

$CKPT – Schedule the Checkpoint of an Element
Use $CKPT to schedule the checkpoint of an element in a JES2 checkpoint table
that has been altered.

Note: $DOGJQE must be used to checkpoint updates to the $JQE.

Format Description

ID=
Specifies the checkpoint information table (KIT) to be used. This value must be
the 1- to 4-character identifier in the KIT for the element to be checkpointed. If
more than 4 characters are specified, only the first 4 are used. The valid
identifiers include:

JOE
The job output table.

LEN=
Specifies the length (in bytes) of a variable-length control block to be added to
the change log record of the checkpoint data set. If the length is not specified
here, the length value defaults to the length of this control block stored in the
checkpoint information table (KIT). This keyword is ignored for fixed-length
control blocks.

ADDR=
Specifies the address of the element to be checkpointed. The address must
point to the beginning of a control block; it must not point to a field within that
control block. If this parameter is omitted, only the header of the checkpoint
area that is specified is checkpointed.

POST=
Specifies whether a post will occur for the checkpoint. The default is
POST=NO, therefore, be certain that if your exit routine relies on a POST of the
checkpoint (CKPT) processor you explicitly provide the $CKPT POST=YES
specification in that routine.

Notes:

1. You must have control of the checkpoint data set when you issue this macro.

2. This macro returns a token value in R0 that uniquely identifies a particular
checkpoint write. This token can be used as the CKPTID on the $CHECK
macro.

3. When you issue a $CKPT under the command PCE, JES2 always posts the
checkpoint processor. This causes JES2 to update the application copy of the
checkpoint data set.

ÊÊ
symbol

$CKPT ID=kit-id-code
,ADDR= addrx

(R1)
,LEN=length

Ê

Ê
NO

,POST= YES

ÊÍ

$CKPT

78 z/OS V1R4.0 JES2 Macros

Environment
v Main task.
v $WAIT cannot occur.

$CPOOL – Build/Delete/Modify/Query a Cell Pool
Use $CPOOL to manage cell pool storage.

$CKPT

Chapter 3. JES2 Programmer Macros 79

Format Description - Execute Form

Note: If you specify a register (Rx), you can specify only registers R2 through R12.

ÊÊ
symbol

$CPOOL ACTION= BUILD, CSIZE= addrx
(Rx)

YES
,FPROT= NO
,HASXB= addr

(Rx)
1

,KEY= n
AUX

,OWNER= CURRENT
MASTER

,PCELLCT=nnnn
,SCELLCT=nnnn

ALL
,SCOPE= COMMON

SINGLE
,TYPE=celltype
,LIMIT= addrx

(Rx)
ANY

,LOC= BELOW
(BELOW,ANY)
CSABELOW
(CSABELOW,ANY)
CSA
DATASPACE

231
,SP= xxx

(Rx)
DELETE, TYPE= celltype
EXPAND, TYPE= celltype

,LIMIT= addrx
(Rx)

FREE, CELL= addrx ,TYPE= celltype
(Rx) NO

,COND= YES
GET, TYPE= celltype

,CELL= addrx YES
(Rx) ,COND= NO

MODIFY, LIMIT= addrx ,TYPE= celltype
(Rx)

QCELL, CELL= addrx ,INFOAREA= addrx ,TYPE= celltype
(Rx) (Rx)

QEXT, INFOAREA= addrx ,TYPE= celltype
(Rx)

QPOOL, INFOAREA= addrx ,TYPE= celltype
(Rx)

Ê

Ê
,MF=E

ÊÍ

$CPOOL

80 z/OS V1R4.0 JES2 Macros

Format Description - List Form

ACTION=
Specifies the action to be performed. Depending upon which ACTION is
specified, one or more of the subparameters may be required or optional.

For the execute form of the macro, this parameter is required. Do not code this
parameter on the list form of the macro.

BUILD
Creates a cell pool in a specified subpool by allocating storage and
initializing the control information.

DELETE
Deletes a previously built cell pool and frees storage and all cell pool
control blocks.

EXPAND
Expands a cell pool by allocating storage for the extent.

FREE
Returns a cell to a cell pool. If the cell to be freed is in a data space, then
the caller must be in AR ASC mode, and CELL= must be in a register with
the corresponding access register set to access the data space.

GET
Obtains a cell from the previously built cell pool and returns its address to
the location specified in CELL=. If there is no such cell pool, then the
service will use the $CPLTAB previously defined for this cell type. The cell
will be set to zero when obtained unless the pool is defined with
CLEAR=NO.

MODIFY
Modifies the limit or the number of cells in a cell pool.

QCELL
Queries information about a cell, and returns this information to a
user-supplied work area.

ÊÊ
symbol

$CPOOL MF=L ,CSIZE=nnnn
YES

,FPROT= NO
1

,KEY= n Ê

Ê
AUX

,OWNER= CURRENT
MASTER

,PCELLCT=nnnn ,SCELLCT=nnnn ,TYPE=celltype Ê

Ê
,LIMIT=nnnn

ANY
,LOC= BELOW

(BELOW,ANY)
CSABELOW
(CSABELOW,ANY)
CSA
DATASPACE

ALL
,SCOPE= COMMON

SINGLE

231
,SP= xxx Ê

Ê
,CELL=nnnn ,INFOAREA=nnnn

ÊÍ

$CPOOL

Chapter 3. JES2 Programmer Macros 81

|
|
|
|
|

QEXT
Queries information about an extent, and returns this information to a
user-supplied work area.

QPOOL
Queries information about a cell pool, and returns this information to a
user-supplied work area.

Depending on which ACTION was coded, some of the following
subparameters may be required or optional:

SP=xxx | (Rx) | 231
Specifies the subpool from which $CPOOL will obtain the cell pool. If a register
or variable is specified, the subpool number is taken from bits 24-31. If this
parameter is not specified, the default is subpool 231. This parameter is allowed
with the BUILD keyword.

FPROT= YES | NO
Specifies whether (YES) or not (NO) the data space is to be fetch protected.

If you specify FPRO=YES, you must also specify LOC=DATASPACE.

OWNER= AUX | CURRENT | MASTER
Specifies the owner of the data space as follows:

AUX JES2 auxiliary address space

CURRENT
Current address space under which the subsystem is running and is
only accessible from the creating address space.

MASTER
Address space 1.

If you specify OWNER=, you must also specify LOC=DATASPACE.

SCOPE= ALL | COMMON | SINGLE
Specifies the scope of accessibility of the data space as follows:

ALL Any address space can access and connect to the data space.

COMMON
All address spaces can access the data space through a single ALET.

SINGLE
Only the owning address space can access the address space.

If you specify SCOPE=, you must also specify LOC=DATASPACE.

TYPE=celltype
Specifies the type of cell. Valid cell types are any of up to 8 alphanumeric
characters, defined by the user.

The following cell types are reserved for use by IBM:
v BAT
v BSC
v B32K
v CB
v EVT
v HASP
v ICE
v NAT
v NHB

$CPOOL

82 z/OS V1R4.0 JES2 Macros

|
|
|
|

v NMAP
v NSA
v NTQ
v PAGE
v PP
v SAPID
v SMF
v TRE
v VTAM
v XRQ

CELL=addrx | (Rx)
Specifies the address or register in which the cell address is returned by the
FREE, QCELL and GET request. This parameter is required with the
ACTION=FREE keyword.

COND=YES | NO
With ACTION=GET or ACTION=FREE request, specifies whether (YES) or not
(NO) to issue $ERROR instead of passing a bad return code to the caller if cell
pool request returns with non-zero return code.

This keyword is only valid when ACTION=GET or ACTION=FREE is specified.
COND= defaults to YES if not specified for ACTION=GET and defaults to NO if
not specified for ACTION=FREE or ACTION=GET.

CSIZE= addrx | (Rx)
Specifies the number of bytes of the cell requested. The minimum value of
CSIZE is 1 byte.

HASXB= addrx | (Rx)
Specifies the address or register (R2-R15) that contains the address of the
address space extension block (HASXB). If you do not specify HASXB=, JES2
obtains the HASXB from the address space block (HASB). If this is a common
cell pool and there is no HASXB then HASXB=NONE will avoid using the
HASXB address. HASXB=NONE is only valid on ACTION=GET, FREE,
EXPAND, and query. This parameter is optional.

INFOAREA= addrx | (Rx)
Specifies the address or register containing the address of a user-supplied work
area where the information is returned by QPOOL, QEXT, and QCELL. The
information returned in this work area is mapped by different mapping macros,
depending on which action was specified. If QEXT was specified, the work area
is mapped by $CPXWORK. If QPOOL was specified, the work area is mapped
by $CPPWORK. If QCELL was specified, the work area is mapped by
$CPCWORK.

KEY=n | 1
Specifies the storage key to be assigned to this subpool. The default is key 1.
This parameter is required with the ACTION=FREE keyword.

LIMIT= addrx | (Rx)
Specifies the maximum number of cells in the cell pool.

PCELLCT= nnnn
Specifies the number of cells expected to be needed in the initial extent of the
cell pool.

SCELLCT= nnnn
Specifies the number of cells expected to be in each secondary or
NON-INITIAL extent of the cell pool. The minimum is one cell.

$CPOOL

Chapter 3. JES2 Programmer Macros 83

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

LOC= ANY | BELOW | (BELOW,ANY) | CSABELOW | (CSABELOW,ANY) | CSA |
DATASPACE

Specifies the location of virtual and real storage for the cell pool as follows:

ANY Anywhere within private storage.

BELOW
Below 16 megabytes in private storage.

(BELOW,ANY)
Virtual storage is below the 16 megabyte line in private storage but it
can be backed in real storage above the 16 megabyte line.

CSABELOW
Below 16 megabytes in CSA. (SP= must be specified as a CSA
subpool.)

(CSABELOW,ANY)
Virtual storage is below the 16 megabyte line in common storage but it
can be backed in real storage above the 16 megabyte line. (SP= must
be specified as a CSA subpool.)

CSA Anywhere in CSA. (SP= must be specified as a CSA subpool.)

DATASPACE
In a data space. (The data space is named by appending the
subsystem name with the celltype specified by TYPE=.)

The following keywords are only valid if the cell pool is in a data space
(LOC=DATASPACE):

FPROT=YES
Specifies whether the data space should be fetch protected (YES)
or not (NO).

OWNER=AUX
Specifies who should own the data space.

MASTER
Address space 1.

AUX JES2 AUX address space.

CURRENT
The current address space.

Note: OWNER=CURRENT data spaces are only accessible from
the creating address space.

SCOPE=ALL
Scope of accessability of the data space.

SINGLE
Only owning address space can access the data space.

ALL Any address space can conntect (via ALESERV ADD) to
the data space.

COMMON
All address spaces can access the data space via a single
ALET.

MF=
Specifies the macro format, requesting an executable or list-form
macro expansion.

$CPOOL

84 z/OS V1R4.0 JES2 Macros

|
|

|
|
|

|
|

|
|

||

|
|

|
|

|
|

|
|

||
|

|
|
|

|
|
|

MF=L Generates the list form.

MF=E Generates form to execute inline.

MF=(E,label)
Generates a form to execute, using the list-form expansion
defined at label ’label’.

Return Codes
The execute form of $CPOOL provides the following decimal return codes in
register 15. The valid return codes are described below, depending on which action
was specified:

Action specified Return codes Description

BUILD 0 Processing successful

4 Cell pool already exists

8 No storage for cell pool

12 and above See the CSRPBLD cell pool service in z/OS MVS Programming: Assembler
Services Guide

DELETE 0 Processing successful

8 No such cell pool

EXPAND 0 Processing successful

4 LIMIT was exceeded

8 No cells available, or CPOOL services not linked

12 and above See the
CSRPEXP cell
pool service in
z/OS MVS
Programming:
Assembler
Services Guide

FREE 0 Processing successful

4 The last cell in an inactive extent was deallocated

8 No such cell pool

12 and above See the
CSRPFRE cell
pool service in
z/OS MVS
Programming:
Assembler
Services Guide

GET 0 Processing successful

4 Could not get a cell, even though there is a cell pool (the reason could be
either that the LIMIT was exceeded or there is not enough storage for
another extent.)

8 No cells available, or CPOOL services not linked

12 and above See the CSRPGET cell pool service in z/OS MVS Programming: Assembler
Services Guide

$CPOOL

Chapter 3. JES2 Programmer Macros 85

||

||

|
|
|

||

||

||

Action specified Return codes Description

MODIFY 0 Processing successful

4 LIMIT was increased by another caller, and new the new LIMIT is higher
than the one requested by this issuance of the $CPOOL macro.

8 Invalid limit

QCELL 0 Processing successful

8 CPOOL services not linked

12 and above See the CSRPQCL cell pool service in z/OS MVS Programming: Assembler
Services Guide

QEXT 0 Processing successful

8 No such cell pool

12 and above See the CSRPQEX cell pool service in z/OS MVS Programming: Assembler
Services Guide

QPOOL 0 Processing successful

8 No such cell pool

12 and above See the CSRPQPL cell pool service in z/OS MVS Programming: Assembler
Services Guide

Environment
v Execute and list form: JES2 Main Task, JES2 subtask (limited to initialization and

termination), User, and functional subsystem (HASPFSSM).

v $WAIT cannot occur.

v Callers in AR ASC mode are supported.

$CWTO – Command Processor Write to Operator
Use $CWTO to cause a write to operator to take place. This macro instruction
returns control to the code issuing the macro. The command processor PCE must
be in control when you issue this macro instruction. Note that, you cannot use
$CWTO in Exit 5 if the exit routine determines that JES2 should process the
command. If you use this macro in Exit 5, your routine must do all required
processing within the exit. When this processing is completed, your routine must
notify HASPCOMM.

Refer to Exit 5 documentation in z/OS JES2 Installation Exits for further details and
recommendations.

Be sure to read “Usage Notes” on page 88 below which describes the interaction of
the L=, the JOB=, and the LAST= macro operands and considerations for when a
console area is specified on a command processed by Exit 5.

$CPOOL

86 z/OS V1R4.0 JES2 Macros

||

Format Description

MSG=
Specifies either the address of the text for the message or the text itself. If you
specify the text, enclose the character string in single quotes ('). If you want the
text to include single quotes, code two single quotes together. In addition, be
sure to add the actual message length on the L= keyword.

L= Specifies either the length, in bytes, of the message text or a register containing
the value. The length does not include the extra single quote coded to allow the
use of a single quote within the text.

MSGID=
Specifies a 3-digit decimal number, from 001-999, to be written out with the
message. You must include leading zeros.

JOB=
Specifies whether the WTO is job related. Code JOB= as follows:

YES
The job name and number are inserted in the message. If you specify YES
for a multi-line message, you must do so for every line of that message.

NO (default)
The message text remains unmodified.

TRUNC=

YES
Any multiple-line WTO is truncated. Additional $CWTO or $CRET macro
executions specifying message text result in the issuance of an SVC34.
The SVC34 treats the message text as a command to JES2.

NO (default)
No truncation takes place.

LAST=
You must code LAST=YES on the last or only line of each message.

YES
Indicates that this is the last line of the multi-line write to operator (MLWTO)
and begins a new line. LAST=YES is required for a single line WTO, or to
signal the last line of MLWTO.

NO (default)
Indicates that one or more lines of a MLWTO will follow.

ÊÊ
symbol

$CWTO
(R1)

MSG= addr
'text'

,L= value
Rx

,MSGID=code Ê

Ê
NO

,JOB YES
NO

,TRUNC YES
NO

,LAST YES

Ê

Ê
YES

,WAIT NO

ÊÍ

$CWTO

Chapter 3. JES2 Programmer Macros 87

WAIT=YES|NO
Specifies the action JES2 is to take if there is no console message buffer
(CMB) immediately available for this message. If JES2 is to wait until a CMB
becomes available, code YES or omit this parameter. If you want JES2 to return
without issuing the message and not wait, code NO.

If you code WAIT=YES or omit WAIT, exit 10, when it receives control, will be
told that it can take an action that will result in a $WAIT.

Note: The interaction of the L=, the JOB=, and the LAST= operands, and
whether a console area was specified on the command itself, can cause
unpredictable results and effects when Exit 5 receives control for a
command. JES2 places the console area specification in field
COMUCMA. If you do not specify a console area, JES2 sets this field to
X'00'. If you do specify a console area, JES2 places the entire command
response into a multi-line WTO and ignores any LAST=YES operands on
the $CWTO macro instruction.

Usage Notes
Use the following guidelines to ensure your command response messages are
readable and are not truncated:

v If a console area is to be used, issue a control line first.

If a console area is to be used for a command response, JES2 processes the
entire response as a multi-line WTO and ignores any LAST=YES operands on
$CWTO macro instructions. JES2 places the console area specification for a
command in field COMUCMA. If there is no console area, JES2 sets this field to
X'00'.

When a console area is to be used, your first $CWTO is a control line for a
multi-line WTO. Since JES2 places a message-id and time stamp at the
beginning of a control line, there is only room for you to specify up to 16
characters on the MSG= operand. IBM recommends you model your message
after the HASP636 message and echo the command in the available 16
characters. Do not code the JOB= or LAST= operands for a control line.

v Issue the remaining messages structuring your logic to reduce dependencies on
whether an area was specified and to provide consistency when displaying job
related messages. To do this:

– Assume each single line and multi-line message will be issued independently
as if an area weren’t specified, that is, code LAST=YES on a $CWTO for a
″single″ line message (Remember, it isn’t really a single line if an area was
specified causing LAST=YES to be ignored.) Similarly, for ″multi-line″
messages, code LAST=NO on the first and middle lines and LAST=YES on
the ″last″ line.

– If you code JOB=YES on a multi-line message, code it for each line of that
message. For a single or multi-line message with JOB=YES, place the eight
character JOBID followed by a blank in the first nine characters of the
message text of the first or only message line. If an area wasn’t specified,
JES2 removes the JOBID from the message text, shifts the remaining text to
the left, and issues a WTO with the specified JOBID. If you are issuing a
multi-line message, place nine blanks at the beginning of text of the remaining
lines.

– Observe the following line length restrictions to reduce dependencies on
whether an area was specified:

$CWTO

88 z/OS V1R4.0 JES2 Macros

- Place only the JOBID and jobname on the first line of a job related
multi-line message, and not more than 25 characters on the first line of a
non-job related multi-line message.

- Limit the length of subsequent message lines to 70 characters if JOB=NO,
or 61 characters if JOB=YES.

Environment
v Main task.
v $WAIT can occur.

$DCBDYN – Call the Dynamic DCB Service Routine
Use $DCBDYN macro as the interface to the $DCBDYN service routine to attach or
detach a JES2 data control block (DCB) and data extent block (DEB) for a specified
device control table (DCT).

Format Description

ATTACH
Requests that a DCB and/or DEB (if one is required) be dynamically created. If
the DCT does not require a DCB (for example, one has already been created),
JES2 takes no further action.

DETACH
Requests that the specified DCB/DEB be dynamically deleted. If the DCT does
not require a DCB or if there is no DCB already attached, JES2 takes no further
action.

DCT=
Specifies a label or register containing the address of the DCT to either be
attached or detached.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 DCB successfully ATTACHed or DETACHed as requested
4 DCB ATTACH failed (GETMAIN unsuccessful)

Environment
v Main task.
v 31-bit addressing mode only.
v $WAIT can occur.

$DCTDYN – Call the Dynamic DCT Service Routine
Use $DCTDYN macro as the interface to the $DCTDYN service routine to attach or
find a JES2 device control table (DCT). This macro passes the DCT name and
subscript and type of request to the calling routine.

ÊÊ
symbol

$DCBDYN ATTACH
DETACH

(R1)
,DCT= label

(Rn)
ÊÍ

$CWTO

Chapter 3. JES2 Programmer Macros 89

Format Description

action
Specifies the action requested.

ATTACH
Requests that the specified DCT be located, or if it doesn’t exist, that a new
one should be created. ATTACH is only a valid specification if this macro is
called by JES2.

FIND
Requests that the specified DCT be located. If the DCT is successfully
located, its address is returned in Register 1.

NAME=
Specifies the address of an 8-byte field that contains the name of the specified
DCT. NAME can be specified as a register (1 to 12) or the name of the field
containing the address of the DCT name. The address is loaded into register 1.

NUMBER=
Specifies the subscript (the binary value) of the DCT. NUMBER can be a
register (0, 2 to 12) or the name of a field containing the subscript. The value is
loaded into register 0. $DCTDYN supports devices that have only one subscript,
such as lines and local printers. It does not support devices that have multiple
subscripts, such as remote printers.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 DCT successfully found for either FIND or ATTACH request
4 DCT successfully ATTACHed if ATTACH requested
8 DCT not found – ATTACH not specified
12 DCT FIND/ATTACH not successful. The subscript specified by

NUMBER= was either: not within the valid range, required and not
specified, or not required and specified.

16 DCT ATTACH not successful – error in $GETMAIN
20 DCT FIND/ATTACH not successful – DCT table not found
24 DCT FIND/ATTACH not successful – UCT not found

Environment
v Main task.
v $WAIT cannot occur.

$DCTTAB – Map DCT table entries
Use $DCTTAB to map and generate DCT table entries.

Use $DCTTAB to map and generate DCT table entries.

$DCTTAB entries are used to define the start of a user table ($DCTTAB
TABLE=USER...) or a JES2 table ($DCTTAB TABLE=HASP...), the end of a table
($DCTTAB TABLE=END) or an entry in a table ($DCTTAB NAME=CALS ...).

ÊÊ
symbol

$DCTDYN ATTACH
FIND

,NAME= label
(Rx)

,NUMBER= label
(Rx)

ÊÍ

$DCTDYN

90 z/OS V1R4.0 JES2 Macros

Note: The format description that follows breaks the macro into a boundary form
(the form that starts or ends a table) and an entry form (the form that
defines each table entry).

Format Description

Boundary Form

Entry Form

ÊÊ
label

$DCTTAB TABLE= HASP
(,NOENTRY)

USER
(,NOENTRY)

DYNAMIC
END

ÊÍ

ÊÊ
label

$DCTTAB NAME=dct-name1
,ALIAS=dct-name2

Ê

Ê
,DESC=desc-text ,DCTTAB=label

Ê

Ê
,DCTPTR= field

(,HCT)
,UCT

,DEVTP=device
Ê

Ê
,SIZE=dct-size ,COUNT= field

(,HCT)
,UCT

Ê

Ê
0

,DEVID= device-id
,ROUTINE=label ,RANGE=nlow-nhigh

Ê

Ê
NO

,SUBTYPE= YES
,PARENT=dctdev-type ,SUBCHAIN=dct-field

Ê

Ê
,CHAIN= field

(,HCT)
,UCT

YES
,DISPLAY= NO

Ê

Ê
NO

,DCB= EXCP
BSAM

,WSTAB= PRWS
PUWS
OJTWS
OJRWS
OSTWS
OSRWS

,WSDEF=label
ÊÍ

$DCTTAB

Chapter 3. JES2 Programmer Macros 91

TABLE=
Specifies the start (TABLE=HASP) and end (TABLE=END) of a DCT table. If
neither this keyword nor NAME= is specified, JES2 generates the DTAB
DSECT.

HASP
Specifies that this is a HASP table.

NOENTRY
Specifies that an ENTRY statement need not be generated for the label of
this DCT table.

USER
Specifies that this is a USER table.

DYNAMIC
Specifies that this is a DYNAMIC table.

END
Specifies the end of the DCT table.

Note: If TABLE= is specified, all other keywords on this macro are ignored.

NAME=
Specifies a 1- to 8-character DCT name for this DCT type.

ALIAS=
Specifies a 1- to 8-character DCT name to be used as an alternate

DESC=
Specifies a 1- to 24-character description of this DCT type. Blanks are allowed
if the text is enclosed in single quotes. This keyword is used for documentation
purposes only.

PCETAB=
Specifies the label on the PCE table entry in the same assembly module that
corresponds to this DCT type. This keyword causes this DCT to be defined in a
one-to-one PCE-DCT correspondence.

Note: PCETAB= and PCEPTR= are mutually exclusive.

PCEPTR=
Specifies the name of a fullword field that contains the address of the PCE that
handles DCTs of this type when not organized in a one-to-one PCE-DCT
correspondence as specified by PCETAB=.

Note: PCETAB= and PCEPTR= are mutually exclusive.

field
Specifies an HCT field if this is a HASP table and a UCT field if this is a
USER table.

HCT
Indicates an HCT field.

UCT
Indicates a UCT field.

DEVTP=
Specifies a unique value used for the 1-byte DCTDEVTP field that defines this
DCT type. This is a required keyword.

$DCTTAB

92 z/OS V1R4.0 JES2 Macros

WSTAB=
Specifies the type of work selection table that corresponds to this DCT.

PRWS
Indicates that this is a printer work selection table.

PUWS
Indicates that this is a punch work selection table.

OJTWS
Indicates that this is an offload job transmitter (OFFn.JT) work selection
table.

OJRWS
Indicates that this is an offload job receiver (OFFn.JR) work selection table.

OSTWS
Indicates that this is an offload SYSOUT transmitter (OFFn.ST) work
selection table.

OSRWS
Indicates that this is an offload SYSOUT receiver (OFFn.SR) work selection
table, a LJTWS for line job transmitter (Ln.JTn) or LSTWS for line SYSOUT
transmitter (Ln.STn).

Notes:

1. This keyword is required for DCTs that support work selection.

2. If this keyword specification is other that those listed above, JES2 assumes
that the table type is user defined.

3. If WSTAB is specified, you must also specify WSDEF=.

WSDEF=
Specifies the address of the default work selection list for this device.

SIZE=
Specifies the size of this DCT type. This can be specified either as an equated
symbol or computed as SIZE – DCT.

CHAIN=
Specifies the name of a fullword field from which all DCTs of this type are to be
chained.

field
Specifies an HCT field if this is a HASP table and a UCT field if this is a
USER table.

HCT
Indicates an HCT field.

UCT
Indicates a UCT field.

COUNT=
Specifies the name of a fullword field that contains the number of DCTs defined
for this DCT type.

field
Specifies an HCT field if this is a HASP table and a UCT field if this is a
USER table.

HCT
Indicates an HCT field.

$DCTTAB

Chapter 3. JES2 Programmer Macros 93

UCT
Indicates a UCT field.

DEVID=
Specifies the device ID that is placed into the first byte of the DCTDEVID field.
If a device does not have a device ID, this field is set to 0.

ROUTINE=
Specifies the name of the routine used to initialize the DCTs.

RANGE=
Specifies the lower (nlow) and upper (nhigh) range limits of the subscript values
that are allowed for this DCT type. If this keyword is not specified, the DCTs will
not contain subscripts.

SUBTYPE=
Specifies whether this DCT has other DCTs chained off it within a subchain.
The default is NO.

PARENT=
Specifies the DCTDEVTP of the DCT off which this DCT is chained.

Note: If this keyword is specified, SUBCHAIN= must also be specified.

SUBCHAIN=
Specifies the name of the field in this DCT which chains the DCT off the parent
DCT and any other DCT types within the subchain.

DISPLAY=
Specifies whether (YES) or not (NO) this DCT will be displayed by a $D U
operator command.

YES
Indicates that this DCT is chained within the DCTPOOL chain and therefore
displayed by the $D U operator command. This is the default.

NO
Indicates that this DCT is chained within the DCTPOL2 chain and therefore
not displayed by the $D U operator command.

DCB=
Specifies whether either a DCB or DEB is built for this DCT.

EXCP
Indicates that both an EXCP DCB and DEB be built.

BSAM
Indicates that a BSAM DCB be built.

NO
Indicates that neither a DCB nor a DEB be built for this DCT. This is the
default.

Environment
v JES2 main task or during initialization and termination.

v $WAIT is not applicable – this macro generates a DSECT or a static table entry;
it does not generate executable code.

$DCTTAB

94 z/OS V1R4.0 JES2 Macros

$DEST – Convert Symbolic Destinations and Binary Route Codes
Use $DEST to convert a symbolic destination to a binary route code or a binary
route code to a symbolic destination.

Note: In all examples cited below, node 1 refers to the local node.

Format Description

DEST=
Specifies the address of the symbolic destination for which a binary route code
is obtained or the address of an area that contains a binary route code which is
to be replaced by a symbolic destination. If register notation is used, the
destination address must be loaded into the designated register before the
execution of this macro instruction.

Note: If CONV=EBINARY was specified, the minimum length required for the
DEST field is 16 bytes. If CONV=SBINARY, the length of the DEST field
must be at least 17 bytes, unless the destination is at the local node and
SUPPRES=YES was specified, in which case the minimum length is 16.

ÊÊ
symbol

$DEST DEST= label
(Rn) SCHAR

,CONV= ECHAR
EBINARY
SBINARY

Ê

Ê
,ERRET= label

(Rn)
NO

,EXPLICIT= YES
NO

,GENERIC= YES

Ê

Ê
HONORED

,NODENAME= IGNORED

NO
,DLMFAIL= YES

NO
,IPFORM= YES

long
short

Ê

Ê ,LEN= value
equate

,NODE= label
(Rn) ,OKRET= label

(Rn)
,PARM=addr

Ê

Ê
NO

,PRIMARY= YES
YES

,RMTPOOL= NO
YES

,SUPPRES= NO

Ê

Ê
,USER=field

Ê

Ê
HONORED

,SHOWUSER= IGNORED

ÊÍ

$DEST

Chapter 3. JES2 Programmer Macros 95

,CONV=
Specifies the type of conversion that is required as follows:

SCHAR
The symbolic destination specified by DEST= is to be converted to a binary
value and returned in R1. The DEST value can be explicit (for example,
LOCAL or NnnnnRnnnn) or a DESTID value.

ECHAR
The symbolic destination specified by DEST= is to be converted to a binary
value and returned in R1. The DEST value must be explicit (for example,
NnnnnRnnnn).

SBINARY
Specifies a binary route code is to be converted to a symbolic destination. If
only a single DESTID matches, it is converted and returned. If no DESTIDs
or more than one DESTID matches, then the explicit form (for example,
NnnnnRnnnn or LOCAL) is returned. The DEST field must be at least 17
bytes in length, unless the destination is at the local node, and
SUPPRES=YES was specified, in which case the minimum length is 16
bytes.

EBINARY
Specifies a binary route code is to be converted to a symbolic destination.
Only the explicit forms are checked (for example, NnnnnRnnnn or LOCAL)
and returned. The DEST field must be at least 16 bytes in length.

ERRET=
Specifies a location to which control is returned if the specified destination is not
valid.

LEN=
Specifies the length or an equated value of the length of the symbolic
destination.

NODE=
Specifies the address or a register that contains the address of a halfword field
that contains the default node number used to construct the binary route code.
If register notation is used, the node number is loaded into the designated
register before the execution of this macro instruction. NODE= is required if you
code CONV=SCHAR or CONV=ECHAR.

EXPLICIT ={YES|NO}
Specifies whether (YES) or not (NO) this $DEST macro call ignores the
DESTDEF initialization statement that can affect how job and SYSOUT
destinations are processed.

If you specify EXPLICIT=YES, the Ndest=, R|RM|RMTdest=, and Udest=
parameters on the DESTDEF initialization statement provide only their default
values on this $DEST macro call.

GENERIC=
Specifies whether or not generic userids can be used.

YES
Specifies that the last character of a userid can be an asterisk (*).

NO
Specifies that an * is not a valid character in a userid.

This parameter is only valid when CONV=SCHAR and a userid field are
specified.

$DEST

96 z/OS V1R4.0 JES2 Macros

NODENAME=
Specifies whether or not DESTDEF NODENAME will affect $DEST processing.

Note: This parameter is only valid when CONV= SCHAR or ECHAR is
specified.

HONORED
The setting of DESTDEF NODENAME will affect $DEST processing. If
DESTDEF NODENAME=REQUIRED, then the destination must be either a
valid destid or a userid explicitly prefixed with a node. If DESTDEF
NODENAME=OPTIONAL, then userids do not require explicit node
qualification.

IGNORED
The setting of DESTDEF NODENAME will not affect $DEST processing.

The default value for DESTDEF NODENAME is HONORED.

DLMFAIL=
Determines whether delimiters within the destination are to be honored (NO) or
considered an error (YES). If yes is specified, the destination passed in must be
followed by trailing blanks or nulls. The default is DLMFAIL=NO.

IPFORM=
This parameter determines what form, if any IP-format destination is valid.

Note: This parameter is only valid when CONV= SCHAR or ECHAR is
specified.

IPFORM=NO (Default)
Specifies that JES2 allows no form of IP-format destination.

IPFORM=YES
Specifies that the input destination can be in IP format, for example:
’node.IP:-address’ or ’IP:ip-address’. You must also specify USER=.

IPFORM=LONG
Specifies that the input destination can be in IP format, for example:
’node.IP:-address’ or ’IP:ip-address’. You must also specify USER=.

IPFORM=SHORT
Specifies that input destination of <IP> is allowed. You must also specify
USER=.

OKRET=
Specifies the address of the routine that is to receive control when JES2 passes
back a zero return code.

PARM=
Specifies the address of storage to be used for a parameter list for the $DEST
service, which will be filled in automatically by the macro. The default for this
parameter is 12(R13) or 12 Bytes past the address contained in register 13..

PRIMARY=

YES
Causes JES2 to return the primary DESTID instead of an explicit route
code if there are multiple route codes which match the binary input. This
parameter takes effect only when you code CONV=SBINARY.

$DEST

Chapter 3. JES2 Programmer Macros 97

NO
Causes CONV=SBINARY to work as described above.

RMTPOOL=

YES
Specifies that JES2 should change the destination to reflect remote pooling.

NO
Remote pooling not in effect.

SUPPRES =
Specifies whether or not destinations at the local node are converted and
displayed differently from destinations at other nodes.

YES Specifies that a first-level destination of the local node name is not
included in the final destination.

When converting from binary input to character at node 1, a destination
of 0001 0005 is resolved as R5. However, a destination of 0002 0005
is resolved as N2.R5 because N2 is not the local node.

When converting from character input to binary at node 1, a destination
of N1.U5 will resolve to a destination of 0000 0005, with no userid
placed in the area specified by USER=.

When converting from character input to binary at node 1, N2.U5
resolves to 0002 0000 with the characters ’U5’ placed in the area
specified by USER=, because N2 is not the local node.

SUPPRES=YES is the default.

NO Specifies that a first-level destination is included in the final destination.

When converting from binary input to character, a destination of
0001 0005 resolves as N1.R5.

When converting from character input to binary, a destination of N1.U5
resolves to a binary destination of 0001 0000 with the characters ’U5’
placed in the area specified by USER=.

USER=
If you code CONV=SBINARY or CONV=EBINARY, you can supply a userid for
the field to be placed in the output area.

If you code CONV=SCHAR or CONV=ECHAR, the conversion routine will
separate the userid from the route code, and place the userid in the field.

SHOWUSER=
Specifies whether or not DESTDEF SHOWUSER will be honored during $DEST
processing.

HONORED
The setting of DESTDEF SHOWUSER will be honored during $DEST
processing

IGNORED
The setting of DESTDEF SHOWUSER will be ignored during $DEST
processing.

The default value for DESTDEF SHOWUSER is HONORED.

$DEST

98 z/OS V1R4.0 JES2 Macros

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Specified destination valid and converted
4 Destination is not valid – error return

Environment
v All environments.
v MVS WAIT or $WAIT cannot occur.
v Callers in AR ASC mode are supported. However, all data areas passed must be

addressable in primary ASC mode.

$DESTDYN – Attach a JES2 DESTID
Use $DESTDYN to generate a destination identifier (DESTID) or alter an existing
DESTID.

Format Description

ATTACH
Specifies to either generate a DESTID or alter an existing DESTID. This
positional keyword is required.

NAME=
Specifies the address of a field or a register (R1-R12) containing the address of
the field that contains an 8-byte DESTID.

DEST=
Specifies a label or a register (R0 or R2-R12) containing the address of a
destination value to be assigned to the destination name pointed to by NAME=.
If TYPE=DEST, this destination value is a symbolic destination of $MAXRCLN
bytes in length. ($MAXRCLN is currently defined by 10 bytes.) If TYPE=NODE,
this destination value is a binary destination value.

TYPE=
Specifies the type of DESTID to be defined and the type of checking required.

DEST
Indicates that the destination ID is a destination name. If the destination
name is already defined as a DESTID, it can be altered as required; if it is
a node, alteration is not allowed.

NODE
Indicates that the destination ID is a node name. If the destination node
name is already defined as a DESTID, it must be for the same node. If the
destination is not previously defined, it is changed to indicate it is a
destination only.

ÊÊ
symbol

$DESTDYN ATTACH
(R1)

,NAME= label
(R0)

,DEST= label Ê

Ê
DEST

,TYPE= NODE
(Rn)

,ERRET= label

ÊÍ

$DEST

Chapter 3. JES2 Programmer Macros 99

ERRET=
Specifies a label or a register containing the address of the routine that receives
control if an error occurs during $DESTDYN processing.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful. Register 0 contains the binary destination

matching the input destination. Register 1 contains the RDT (remote
destination table) address.

4 GETMAIN error for a new RDB (remote destination table block)
8 $DEST returned an error for the destination value passed.
12 $DEST indicated that the destination value passed is an explicit

destination route value. Register 0 contains the binary destination
matching the input destination. Register 1 contains the binary
destination matching the destination name.

16 $DEST has detected an invalid alteration attempt of an existing
RDT. Register 0 contains the binary destination matching the input
destination.

Environment
v Main task.
v $WAIT cannot occur.

$DILBERT – Do It Later BERT Services
Use $DILBERT to specify a routine to gain control when JES2 releases the block
extension resuse table (BERT) lock for a specific job.

Format Description

TYPE=
Specifies the type of BERT. The only supported type is: JQE.

ÊÊ
symbol

$DILBERT TYPE=JQE
,CBADDR= addr

(Rn)
,CALL= YES

NO

Ê

Ê ,ROUTINE=rtn-name
,PARM0=parameter

,POST=resource Ê

Ê
YES

,ALLOWDUP= NO
,ERRET= label

(Rn)
,OKRET= label

(Rn)

Ê

Ê ,INST=(OPCODE,OPERAND,IMMED)
,FLUSH= YES ,WAIT

,NOWAIT
NO

Ê

Ê
NO

,#POST= YES
COND

,QPOST= YES
PROCESS

,FUNCTION= CHECK

ÊÍ

$DESTDYN

100 z/OS V1R4.0 JES2 Macros

CBADDR=
Specifies the control block JES2 passes to the routine in register 1. This control
block might be at a different address once JES2 passes it to the specified
routine. It will however represent the same data within the checkpoint.

CALL=
Specifies whether (YES) or not (NO) JES2 will immediately call the routine
specified on the ROUTINE= parameter if the BERT lock is currently available.
CALL=YES is mutually exclusive with INST and FLUSH.

ROUTINE=
Specifies the name of the routine to get control after JES2 frees the BERT lock
for the job. ROUTINE is mutually exclusive with INST and FLUSH.

PARM0=
An optional parameter JES2 passes in register 0 to the routine you specified by
ROUTINE=.

POST=
Specifies the resource to be $POSTed when the queue element becomes
available. This specification automatically causes suppression of duplicate
DWAs, that is, as if ALLOWDUP=NO were specified.

ALLOWDUP=YES | NO
Specifies whether (YES) or not (NO) this DWA should be queued if it is a
duplication of an already queued DWA. The default if YES.

ERRET=
Specifies a label to be branched to or a register to be branched on if a non-zero
return code is returned in R15.

OKRET=
Specifies a label to be branched to or a register to be branched on if a zero
return code is returned in R15.

INST=
Specifies a single triplet that specifies an operation to be performed against a
field (OPERAND) within CBADDR with an immediate type instruction.

OPCODE
The operation instruction can be one of the following: MVI (move), XI
(exclusive OR), OI (OR), or NI (AND).

OPERAND
The field name within CBADDR that JES2 will manipulate as instructed by
the opcode and immediate operand.

IMMED
The ‘immediate’ data field the opcode uses to manipulate the operand.

For example,
INST=(OI,JQEFLAG7,JQE7SPIN)

JES2 manipulates JQEFLAG7 based on an OR operation against field
JQE7SPIN.

INST= is mutually exclusive with ROUTINE=, CALL=YES, and FLUSH=.

FLUSH=
Specifies whether (YES) or not (NO) the pending work for the queue element
should be executed by JES2. If YES is specified, an optional second operand of
WAIT/NOWAIT can be specified.

$DILBERT

Chapter 3. JES2 Programmer Macros 101

WAIT
The PCE is $WAITed until all pending work is finished.

NOWAIT
If the BERT lock for the job is not available, a return code of 4 is returned
and the PCE is $POSTed for WORK when the flush completes.

FLUSH= is mutually exclusive with INST=, CALL=, and ROUTINE=.

QPOST=
Specifies how to call $DOGJQE when a JQE is returned. QPOST=YES means
that a $DOGJQE QPOST=YES will be used; QPOST=COND means that a
$DOGJQE QPOST=COND will be used. The default is COND.

#POST=
Specifies how to call $DOGJQE when a JQE is returned. #POST=YES means
that a $DOGJQE #POST=YES will be used; #POST=NO means that a
$DOGJQE #POST=NO will be used. The default is NO.

FUNCTION=
Specifies the function (PROCESS or CHECK) that $DILBERT will perform.

PROCESS
This will allow updates to BERTs to be deferred until the BERT lock is no
longer held by another processor. FUNCTION=PROCESS is the default.

CHECK
This will examine the pending $DILBERTed work to find a DWA with the
same routine and parameters. A return code of 4 indicates that a matching
DWA was found. A return code of 0 indicates no matching DWA was found.
ROUTINE= is a required parameter, while PARM0= and PARMA1= are
optional. Even if PARM0 or PARMA1 are not specified, its default of zero
will be used when comparing to find a match.

For example:
FUNCTION=CHECK,ROUTINE=ABCD

FUNCTION=CHECK is mutually exclusive with TYPE=, CBADDR=, CALL=,
POST=, ALLOWDUP=, PACE=, INST=, FLUSH=, QPOST=, QSUSE= and
#POST=.

JES2 examines the pending DWAs searching for one that has
ROUTINE=ABCD and PARM0 PARMA1 set to its default.

Environment
v JES2 Main task only

v $WAIT cannot occur

Return Codes
Return codes (R15 on exit) FUNCTION=PROCESS

Return Code Meaning
0 Processing successful (no errors).
4 FLUSH request with WAIT=NO and BERT lock not available; or any

other duplicate request and ALLOWDUP=NO specified or implied.
8 DWA constructed, request deferred.

Return codes (R15 on exit) FUNCTION=CHECK

$DILBERT

102 z/OS V1R4.0 JES2 Macros

Return Code Meaning
0 NO matching DWA found.
4 Matching DWA found.

$DISTERR – Indicate Disastrous Error
Use $DISTERR to indicate that a disastrous error has occurred. The macro
instruction causes the message $HASP096 DISASTROUS ERROR AT SYMBOL
symbol IN CSECT module to be printed out on the $ERR and $LOG consoles.

Format Description

symbol
Consists of a symbol to be used to generate the error message and so that it
can be referenced in the assembler cross reference for the indicated module.
This symbol must be specified .

BUFFER=
Specifies the address of a buffer that contains information concerning the
disastrous error. This buffer information is traced. If BUFFER= is omitted no
disastrous error information is traced.

JOB=
Specifies the address of either the JCT or the JQE of the job being processed
at the time the error occurred. If JOB= is specified, the job ID and job name are
added to the start of the $HASP096 message.

MTTR
Specifies the address of the module track record (MTTR) or a register that
contains the address. The MTTR is recorded in a symptom record if a
disastrous error occurs.

Environment
v Main task.
v $WAIT can occur.

$DOGBERT – Deliver or Get BERT Data
Use the $DOGBERT macro to copy data from the Block Extension Reuse Table
(BERT) portion of the checkpoint into local storage or to return that data to the
checkpoint.

ÊÊ
symbol

$DISTERR
BUFFER=addrx ,JOB= addrx

(R0)

Ê

Ê
,MTTR= addrx

(Rn)

ÊÍ

$DILBERT

Chapter 3. JES2 Programmer Macros 103

Format Description

ACTION=
Specifies the action to be taken. ACTION= is a required keyword. Valid values
are:

(FETCH,READ | UPDATE | CREATE)

Requests that the BERTs described by the TOKEN= or NAME= be copied
into the area pointed to by CBADDR. READ gets a read-only copy of the
data. UPDATE gets a copy that can be updated and obtains the BERT lock.
If neither READ nor UPDATE is specified, then READ is assumed.

UPDATE is not allowed if DSERV= is specified. CREATE is the same as
UPDATE but will create the named control block if it does not already exist.
NAME= is required if CREATE is specified. READ is assumed if none of
these actions (READ, UPDATE, or CREATE) are specified. UPDATE and
CREATE are not allowed if DSERV= is specified.

Valid syntax is:
v ACTION=FETCH
v ACTION=(FETCH,READ)
v ACTION=(FETCH,UPDATE)

ÊÊ
label

$DOGBERT ,ACTION= FETCH
(,READ)

,UPDATE
,CREATE

FETCHNEXT
(,READ)

,UPDATE
RETURN
CKPT
FREE
SETSPECIAL
QUERYLOCK
GETOFFSET
GETLENGTH

COERCE
(,READ)

,UPDATE

Ê

Ê CBADDR=address CBTYPE=xxxxxxxx NAME=xxxxxxxx DSERVE=address Ê

Ê TOKEN=address NAME=name
YES

WAIT=
NO

YES
QSUSE=

NO

YES
SPECIAL=

NO
Ê

Ê UPDATE=
ACCEPT
IGNORE

OKRET=label, NOTFOUND=label, MUSTWAIT=label, Ê

Ê NOSUPPORT=label, ERRET=label, Ê

Ê LOCKED=label, NOTLOCKED=label, ÊÍ

$DOGBERT

104 z/OS V1R4.0 JES2 Macros

v ACTION=(FETCH,CREATE)

(FETCHNEXT,READ | UPDATE)
This action will do an implicit RETURN of the current CB into the BERT and
then FETCH the next BERT in the chain. The READ and UPDATE option
apply to the FETCH part of the operation. For the first control block, pass
no token and ensure the token in the prefix is zero. NAME= is not allowed
for FETCHNEXT.

CKPT
This action is the same as RETURN except the BERT lock is not released.
The changes made to the control block are scheduled to be written to the
JES CKPT data set. There is no guarantee that the BERT has been written
on this call.

RETURN
Requests that the CB passed be broken down to its BERTs and placed in
the JES2 CKPT. The CB had to be obtained for UPDATE access. The
BERT lock is released by this function. The TOKEN value returned from the
FETCH (or FETCHNEXT) call must be passed on the RETURN call. An
error return is taken (RC=16) if a control block fetched for READ access is
passed to RETURN.

To create a new set of BERTs, do a RETURN with TOKEN= pointing to a
ZEROed token value. BERTs are created and the token area updated.

FREE
The BERTs associated with the passed TOKEN= or NAME= (if supported)
are freed. If the BERTs are chained, the specified BERT is dechained
before being freed. If CBTOKEN= is passed, the CB must be in update
mode.

SETSPECIAL
The SPECIAL attribute of an update mode control block is changed.
Changing the SPECIAL attribute involves either getting or releasing the
BERT lock. This request will only update the lock. No other data is
updated.

(COERCE,READ | UPDATE)
The mode of the control block passed is changed to the mode specified
without any update to the control block or the checkpointed BERTs.

QUERYLOCK
This action tests to see if the lock is available for the BERT whose token is
passed as TOKEN=. If the lock is held, R15 will be set to the member that
owns the lock; R1 will be the address of the PCE and R14 the address of
the PREBERT if the owning member is our member. Otherwise, they will be
zero. The following exit labels are honored:

LOCKED=
Label branched to if the lock is held.

NOTLOCKED=
Label branched to if the lock can be obtained.

ERRET=
If specified, additional verification on the BERT type is done. This is
label branched to if the validation fails.

MUSTWAIT=
If specified, additional checking is done to ensure there are free BERTs

$DOGBERT

Chapter 3. JES2 Programmer Macros 105

if one is needed for the lock. This is the label branched to if the lock is
free, there are no BERTs for the CB, and there are no free BERTs
(valid main task only).

GETOFFSET
Obtains the offset of a particular set of fields defined on a $BERTTAB.
CBTYPE= and NAME= are required and must match the CBTYPE= and
NAME= parameters on the $BERTTAB.

GETLENGTH
Obtains the length of a control block. The length is the highest offset used
by any $BERTTAB. CBTYPE= is required.

CBADDR=
Specifies the address of the control block storage. The control block must be
prefixed with a $PREBERT. This service will validate and set the appropriate
fields in the prefix. If this is a FETCH or FETCHNEXT request, the BERTs will
be used to set fields in this area. If this is a CKPT or RETURN request, this
area contains the data that will be used to build the BERTs. If this is a FREE
request, the prefix is validated before freeing the element. CBADDR= is
required for ACTION=FETCH, FETCHNEXT, CKPT, and RETURN requests.
CBADDR= is optional for FREE requests.

CBTYPE=
Specifies the type of control block to be processed. The type corresponds to a
CBTYPE= on a $BERTTAB macro. CBTYPE is always required. Valid values
are:
v JQE
v CAT
v WSCQ
v INTERNAL

Note: CBTYPE=INTERNAL is used by the various BERT services and does
not have a corresponding $BERTTAB. The first two bytes of an internal
control block must contain the total control block length.

TOKEN=
Specifies the 4-byte token associated with the first in set of BERTs. This is used
as input for all services and as output for the FETCH, FETCHNEXT, CKPT, and
RETURN services. For ACTION= FETCH and FREE, either TOKEN= or
NAME= must be specified. For ACTION= FETCHNEXT, CKPT, and RETURN (if
TOKEN= is not specified), the current token from the $PREBERT area is used.
If specified as a register, then the register must point to a 4-byte token field.

NAME=
Specifies the name of the BERT to be FETCHed or FREEd. The length of the
name field is defined by the $BERTTAB for the control block type. The value
will be used as input if specified on ACTION= FETCH or FREE calls. For
ACTION=FETCHNEXT, NAME= specifies an optional output field to place the
NAME in. NAME= is not allowed on an ACTION=CKPT request. For
ACTION=OFFSET, the name is a specific name that should match the name
coded on a $BERTTAB.

WAIT=
Specifies whether (YES) or not (NO) the $DOGBERT service is allowed to
$WAIT. This parameter is only valid when DSERV= is not specified. If a $WAIT
is needed (for example, when not owning the queues or no BERTs available),
the $DOGBERT service will return to the caller (through the MUSTWAIT=
label). The default is WAIT=YES.

$DOGBERT

106 z/OS V1R4.0 JES2 Macros

QSUSE=
Specifies whether (YES) or not (NO) to obtain the CKPT queue lock before
returning data. This is only valid if DSERV= is not specified and for FETCH and
FETCHNEXT calls requesting read access to data. The default is QSUSE=YES.

SPECIAL=
Specifies whether (YES) or not (NO) special write processing is to be
performed. Special processing grants write access to a control block but does
not lock the element. The lock is checked and a wait is done if it is not available
(and WAIT=YES is specified). On ACTION=RETURN, processing the lock is not
released. A caller requesting SPECIAL=YES on a FETCH must also code
SPECIAL=YES on the ACTION=RETURN. Also, the caller cannot $WAIT
between the FETCH and the corresponding RETURN. If the caller decides not
to update the control block, the RETURN call is not required. The default is
SPECIAL=NO. SPECIAL= is only valid on ACTION=FETCH or FETCHNEXT
with UPDATE access and ACTION=RETURN.

UPDATE=ACCEPT | IGNORE
For ACTION=RETURN and FETCHNEXT request (with previous BERT being
obtained for UPDATE access), this keyword determines if any updates should
be honored (ACCEPT) or ignored (IGNORE). If bypass is specified, the service
only releases the lock associated with the BERT.

DSERV=
Specifies the address of the DSERV control block for the checkpoint version to
be used. If not specified, the real CKPT is used. DSERV= is required if this is
not the main task and not allowed if it is the main task. DSERV= is only valid
for ACTION=FETCH or FETCHNEXT with read access being requested.

OKRET=
Specifies the normal return branch label.

NOTFOUND=
Specifies the label to branch to if a BERT that matches NAME= cannot be
found. Also used when ACTION=FETCHNEXT and there are no more entries
left.

MUSTWAIT=
Specifies the label to branch to if the ACTION requires a $WAIT and WAIT=NO
was specified. For example, an ACTION=RETURN or CKPT that needs a new
BERT when there are none free.

NOSUPPORT=
Specifies the label to branch to if the current environment does not support
BERTs. Checks of the prefix area are made prior to checking for BERT support.

ERRET=
Specifies the default error branch label. This is used for return codes that do
not have specific return code parameters, and in cases where NOTFOUND or
MUSTWAIT are not specified.

ACTION=

Table 4. $DOGBERT Parameter Table (1 of 2)

FETCH,
READ

FETCH, UPDATE FETCHNEXT,
READ

FETCHNEXT,
UPDATE

CKPT

CBADDR Ri Ri Ri Ri Ri

CBTYPE Ri Ri Ri Ri Ri

TOKEN Oio* Oio* Oio Oio Oio

$DOGBERT

Chapter 3. JES2 Programmer Macros 107

Table 4. $DOGBERT Parameter Table (1 of 2) (continued)

FETCH,
READ

FETCH, UPDATE FETCHNEXT,
READ

FETCHNEXT,
UPDATE

CKPT

NAME** Oi* Oi* Oo Oo X

DSERV Oi X Oi X X

WAIT Oi X Oi Oi Oi

QSUSE Oi X Oi X X

SPECIAL X Oi X Oi X

ERRET X X X Oi X

NOTFOUND O O O O X

MUSTWAIT O O O O O

NOSUPPORT O O O O O

ERRET O O O O O

LOCKED X X X X X

NOTLOCKED X X X X X

Table 5. $DOGBERT Parameter Table (2 of 2)

RETURN FREE SETSPECIAL COERCE QUERYLOCK

CBADDR Ri Oi Ri Ri X

CBTYPE Ri Ri Ri Ri Ri

TOKEN Oio Oio* Oio Oio Ri

NAME** X Oi* X X X

DSERV X X X X Oi

WAIT Oi Oi Oi Oi X

QSUSE X X X X X

SPECIAL Oi X Ri Oi X

ERRET Oi X X X X

NOTFOUND X O X X X

MUSTWAIT O O O O X

NOSUPPORT O O O O X

ERRET O O O O O

LOCKED X X X X O

NOTLOCKED X X X X O

Keys:
X = Not valid i = Input
O = Optional o = Output
R = Required

Note:

* If TOKEN= and NAME= are both specified for ACTION= FETCH or FREE,
then NAME= is assumed to be an input field and TOKEN= is an output field.

$DOGBERT

108 z/OS V1R4.0 JES2 Macros

** NAME= is only valid if the CB supports named references (as specified in
the BERTTAB).

Environment
v JES2 main task.
v $WAIT can occur.

Return Codes
Return codes (R15 on exit) not ACTION=QUERYLOCK:

Return Code Meaning
0 BERT has been processed.
4 Entry not found.
8 $WAIT needed but user coded WAIT=NO.
12 BERTs not supported at this time.
16 Other error.

Return codes (R15 on exit) ACTION=QUERYLOCK:

Return Code Meaning
0 Lock is not held.
Not 0 Member number that owns lock.

$DOGCAT – Deliver or Get CAT (Class Attribute Table)
Use $DOGCAT to request that JES2 invoke class attribute table (CAT) processing
to either return a copy of the CAT in a work area or to return the CAT to the
checkpoint.

Format Description

ÊÊ
symbol

$DOGCAT
,READ

ACTION= FETCH ,UPDATE
()

,READ
FETCHNEXT ,UPDATE

()
RETURN

Ê

Ê ,CAT=addr ,JOBCLASS=addr
,TYPE=job_type ,INIT= YES

NO
,UPDATE= ACCEPT

IGNORE

Ê

Ê
NO

,ALLQUES= YES
(,REBLD)

,DSERV= addr
(Rn)

Ê

Ê
,ERRET= label

(Rn)
,OKRET= label

(Rn)

ÊÍ

$DOGBERT

Chapter 3. JES2 Programmer Macros 109

ACTION=
The function requested of the $DOGCAT service.

(FETCH,READ | UPDATE)
Request that JES2 return the CAT for the specified job class.

READ
Indicates that you request a read-only copy of the CAT

UPDATE
Indicates that you request a copy of the CAT that you can update. JES2
locks the CAT using the block extension reuse table (BERT) lock until
you return the updated copy.

(FETCHNEXT,READ | UPDATE)
Requests that JES2 get a copy current CAT and then “fetch” the next CAT
in the chain.

Notes:

1. JOBCLASS= is mutually exclusive with FETCHNEXT.

2. If you specify FETCHNEXT, CAT= is also required.

3. If the value of CAT= is zero, JES2 returns the first CAT in the chain.

RETURN=
Specifies that JES2 should unlock the CAT, the NEW values in the CAT
written to the checkpoint, and the work space storage freed.

JOBCLASS=
Specifies the address of an 8-byte field that contains the job class for which the
CAT is to be obtained. The job class should be left-aligned and padded with
blanks.

JOBCLASS= is mutually exclusive with TYPE=.

TYPE=
Specified the job type for which the CAT is to be obtained.

TYPE= is mutually exclusive with JOBCLASS=.

INIT= YES | NO
Specifies whether (YES) or not (NO) to build a CAT using the initialization (that
is, local copy) of the CAT control

UPDATE=ACCEPT | IGNORE
Specifies for ACTION=RETURN and FETCHNEXT request (with previous CAT
having been obtained for UPDATE access) whether JES2 should honor
(ACCEPT) or ignore (IGNORE) an updates to the CAT.

DSERV=
Specifies the address of the DSERV control block for the checkpoint version
you request JES2 to use. If you do not specify DSERV=, JES2 uses the real
CKPT.

Notes:

1. DSERV= is not allowed in the JES2 main task environment.

2. You must specify DSERV= in User, Subtask, and FSS environments.

3. The address of the DSERV control block can be obtained with either the
SSI function code 71 or the $CALL CKPTVERS service in HASCSRIC.

$DOGCAT

110 z/OS V1R4.0 JES2 Macros

(ALLQUES=YES | NO,REBLD)
Specifies whether (YES) or not (NO) JES2 returns all job queues. If you specify
ALLQUES=YES, JES2 returns a CAT will be returned for each of the queue
heads in the JQE.

ALLQUES=YES is only allowed when you also specify ACTION=FETCHNEXT.

You can specify a second positional parameter,REBLD to indicate that JES2
also returns the JQE rebuild queue as a queue head.

CAT=
For an ACTION=FETCH call, JES2 obtains and returns the address of the CAT
to the caller. The caller should not provide a work area on this type of call.

For ACTION=RETURN, the caller provides the address of the CAT that JES2
will return.

ERRET=
Specifies a label to be branched to or a register to be branched on if a non-zero
return code is returned in R15.

OKRET=
Specifies a label to be branched to or a register to be branched on if a zero
return code is returned in R15.

Environment
v Main Task - all actions are available

v USER, SUBTASK and FSS environment - only FETCH and FETCHNEXT for
READ access

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 CAT processed successfully
4 CAT not found

On return, register 1 contains the address of the CAT returned.

$DOGJQE – Deliver or Get JQE
Use $DOGJQE to request that JES2 build or return an artificial JQE. An artificial
JQE consists of the base JQE, the JQX, and the additional fields defined in the
JQA.

When a call is made with ACTION=FETCH, the caller can provide a real JQE, a
read mode JQA, or an update mode JQA. If a real JQE or read mode JQA is
provided, then a new JQA is obtained for the caller. The JQA returned from
$DOGJQE will always be a Z2 mode JQA. Therefore, the caller of $DOGJQE does
not have to determine the mode of the checkpoint (R4 or Z2) before accessing
fields in the JQA.

If a FETCH call is made and the input is an update mode JQA, then that same JQA
is passed back to the caller. Transparently to the caller, a stack element is created
to keep track of the callers who are using the same JQA. The elements are kept in
a USER stack and are taken off the queue in a last in, first out manner when the
caller makes a RETURN call. All stack elements are removed if the caller makes a
FREE call or (RETURN,UNCONDITIONAL).

$DOGCAT

Chapter 3. JES2 Programmer Macros 111

Format Description

CBADDR=addrx[,KEEP]
Address of an artificial JQE (JQA).

On an ACTION=FETCH call, JES2 obtains and returns this address to the
caller. The caller should not provide a work area on this type of call unless it is
a work area whose address was returned via R0 on some prior $DOGJQE
ACTION=FETCH call. JQAs obtained via ACTION=FETCH must eventually be
released via ACTION=RETURN (without the KEEP operand) or ACTION=FREE.

On an ACTION=RETURN|CKPT|FREE call, the caller provides the address of
the artificial JQE (JQA). On an ACTION=CKPT call JES2 assumes that the
CBADDR you pass is a JQA or a JQE. If the CBADDR you pass is not a JQA
for ACTION=RETURN or FREE, a Q21 abend will occur.

CBADDR is the address of a JQA and is a required parameter on
ACTION=RETURN, CKPT, and FREE calls. If CBADDR is not provided on an
ACTION=FETCH call, by default JES2 obtains the required storage and returns
the address of the JQA in register 0. If CBADDR is provided on an
ACTION=FETCH call and the JQA is in the wrong mode (it’s a READ mode
JQA and the current request is for an UPDATE mode or vice-versa), then the
provided JQA is released and a new JQA is obtained in the proper mode.

ÊÊ
symbol

$DOGJQE CBADDR=addrx
,KEEP

Ê

Ê ,ACTION= RETURN
(,KEEP)

,UNCONDITIONAL
,NOUPDATE

CKPT
FREE

FETCH
(,READ)

,UPDATE
(FETCHNEXT,READ)
REFRESH
GETJQEADDR

SETACCESS
(,READ)

,UPDATE
QUERYLOCK

OBTAINABLE
GETJQXADDR

,DSERV=addr Ê

Ê
NO

,SPECIAL= YES

,JQE=jqe_addr ,JQEOFF=jqe_offset ,CHAIN=offset Ê

Ê
,ENDOFCHN= label

(Rn)
YES

,WAIT= NO
DEFER

,ERRET= label
(Rn)

Ê

Ê
,OKRET= label

(Rn)
COND

,QPOST= YES
NO

,#POST= YES

ÊÍ

$DOGJQE

112 z/OS V1R4.0 JES2 Macros

KEEP
Requests that JES2 retain the memory for CBADDR. This is only valid for
ACTION=RETURN calls. The retained memory can be passed in on the
CBADDR parameter for an ACTION=FETCH call. JES2 uses the data area
passed in rather than obtaining a new work area.

ACTION=
The action you request JES2 to take. Valid values are:

(FETCH)
Requests that JES2 construct an artificial JQE. By default, JES2 obtains
and returns the address of the artificial JQE to the caller. See CBADDR= for
more information. FETCH always returns a JQA that is in Z2 mode.

(FETCH,READ)
Gets a read-only copy of the data.

(FETCH,UPDATE)
Gets a copy of the data that you can update. You cannot specify UPDATE if
you also provide a job information block via the DSERV= keyword.

Note: A $QSUSE must be in effect when this call is made and the access
requested is UPDATE.

(FETCHNEXT,READ)
Request that JES2 refresh (using the next JQE found by using the CHAIN=
field provided) the artificial JQE in the area pointed to by CBADDR=. If
FETCHNEXT is specified, you must also specify CHAIN=. If there are no more
JQEs on the chain, JES2 converts the call to an ACTION=RETURN call and
passes control to the point specified by ENDOFCHN=.

(RETURN)
Requests that the artificial JQE be broken down and the component parts be
placed into the JES2 checkpoint (CKPT). The component parts of the artificial
JQE will be placed into the checkpoint only if the artificial JQE is in UPDATE
mode. If the JQA is obtained in READ mode, JES2 releases the memory of the
artificial JQE.

Optionally, a second operand can be supplied with RETURN:

(RETURN,KEEP)
Requests that JES2 retain the memory for CBADDR. This retained memory
can then be passed in on the CBADDR parameter for an ACTION=FETCH
call. JES2 will then use the data area passed in rather than obtaining a new
work area.

(RETURN,UNCONDITIONAL)
Specifies that the BERT lock and memory for the JQA will be released
regardless of the number of apparent users of the JQA in the user stack.
The user stack elements are released as well.

(RETURN,NOUPDATE)
Specifies that the JQA is to be returned but the JQA itself is not to be
written to the checkpoint. If USER stack elements exist, a single stack
element will be popped. If no user stack elements exist, this is equivalent to
ACTION=FREE.

Note: Any changes made to the artificial JQE will NOT be backed out.

CKPT
Requests JES2 breaks down the artificial JQE into its component parts and

$DOGJQE

Chapter 3. JES2 Programmer Macros 113

places them into the JES2 checkpoint (CKPT). You must also obtain the JQA
for UPDATE access; JES2 does not release it after use.

Optionally ACTION=(CKPT,POST) can be coded. If POST is provided, a $POST
CKPTW is executed after the data is placed in the CKPT.

Note: If the CBADDR passed is not a JQA, it is assumed to be a JQE and
JES2 will checkpoint the real JQE.

FREE
Requests that the artificial JQE be released without updating the checkpoint.
The result will be that the BERTs are unlocked, the JQA memory is freed and
all the user stack elements are freed.

REFRESH
Requests that JES2 refresh the artificial JQE from the checkpoint

GETJQEADDR
Requests that JES2 determines the address of the JQE represented by the
artificial JQE.

(SETACCESS)
Requests that JQA be placed into UPDATE mode, implying that the JQA will be
refreshed from the checkpoint data.

Optionally, a second operand can be supplied with SETACCESS:

(SETACCESS,READ)
JES2 makes the JQA READ-only, implying that the already existing data in
the JQA will be copied to the checkpoint.

Note: Requesting a SETACCESS,READ against a JQA with a stack of
users results in a Q19 abend.

(SETACCESS,UPDATE)
JES2 places the JQA into UPDATE mode implying that the JQA will be
refreshed from the checkpoint data.

Note: A $QSUSE must be in effect when this call is made and the access
requested is UPDATE.

QUERYLOCK
Requests that JES2 determine if the BERT lock is held for the JQE.

If you specify QUERYLOCK, you must also specify either CBADDR=, JQE=, or
JQEOFF.

QUERYLOCK,OBTAINABLE
Indicates that the caller needs to know if the BERT lock is free and there is
a BERT available to obtain the lock. If the BERT lock is available, but there
are no BERTs available in which to place the lock, JES2 returns a return
code of -1 to the caller. In all other cases the return from this form of the
QUERYLOCK is identical to ACTION=QUERYLOCK.

GETJQXADDR
Requests that the address of the real JQX represented by the artificial JQE be
computed.

SPECIAL=
Specifies whether (YES) or not (NO) the caller is willing to not get the BERT
lock for the JQA. This implies that no $WAITs will occur if a change is made.

$DOGJQE

114 z/OS V1R4.0 JES2 Macros

SPECIAL=YES is valid only for ACTION=(FETCH,UPDATE) calls and must also
be specified for the corresponding ACTION=RETURN call.

DSERV=
Address of the JES job information service token list (DSERV) control block for
the checkpoint version to be used. If not specified, JES2 uses the real CKPT.

Notes:
1. DSERV= is required if this is not the main task environment.
2. DSERV= is not allowed if this is the main task environment.
3. DSERV= is only valid for ACTION=FETCH with read access requested.
4. The address of the DSERV control block can be obtained with either the

SSI function code 71 or the $CALL CKPTVERS service in HASCSRIC.

JQE=
Address of the JQE or JQA. JQE= or JQEOFF= is required for
ACTION=FETCH calls and optional for ACTION=QUERYLOCK, otherwise it is
not valid. JQE= is mutually exclusive with JQEOFF=.

If JQE is the address of a JQE or the address of a READ mode JQA, then a
new JQA is constructed. If JQE is the address of an UPDATE mode JQA, then
that JQA is updated with an address of a user stack element.

JQEOFF=
Offset of the JQE. JQE= or JQEOFF= is required for ACTION=FETCH calls
only. JQEOFF= is mutually exclusive with JQE=.

CHAIN=
Offset of field which is to be used to find the next JQE. The field must be within
the artificial JQE. This specification is required for ACTION=FETCHNEXT calls
only.

ENDOFCHN=
Specifies a label or a register that contains an address to which JES2 branches
if an end-of-chain condition exists for ACTION=FETCHNEXT. If JES2 reaches
the JQE end-of-chain, JES2 frees the JQA.

WAIT=
Specify whether (YES) or not (NO) JES2 is allowed to wait on this call request.
If a WAIT is necessary within this $DOGJQE service and WAIT=NO has been
specified, then the ACTION requested will be not be done. DEFER specifies
that a RETURN action be automatically scheduled for a later time if it is not
possible to RETURN a JQA at the current time.

ERRET=
Specifies a label to be branched to or a register to be branched on if a non-zero
return code is returned in R15.

OKRET=
Specifies a label to be branched to or a register to be branched on if a zero
return code is returned in R15.

QPOST=
Specifies the conditions under which the QPOST routine will be called. If YES is
coded, a call to QPOST is made regardless of any other factors. If COND is
coded, then the call is dependent upon whether the PCE has $WAITed since
FETCHing the JQA. QPOST=COND is the default. See note in #POST
description for valid use.

#POST=
Specifies the conditions under which the $#POST routine will be called. If YES
is coded, a call to $#POST is made regardless of other factors. If NO is coded,

$DOGJQE

Chapter 3. JES2 Programmer Macros 115

then $#POST is not called unless some other user of the JQA, for example
another element in the stack, has specified #POST=YES. #POST=NO is the
default.

Note: QPOST and #POST are valid only if the first operand of ACTION= is
RETURN or CKPT. QPOST and #POST will have an effect only when
the final RETURN of an update mode JQA is made.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful. Lock is not held if ACTION=QUERYLOCK.
NZ Contains the member number holding the BERT lock if

ACTION=QUERYLOCK was specified.
-1 ACTION=QUERYLOCK was specified and lock is available, but an

attempt to lock the JQE would fail because of a BERT shortage.
Only returned if ACTION=(QUERYLOCK,OBTAINABLE).

The following return codes (in decimal) are returned in register 15.

Return Code Meaning
4 Processing successful even though CBADDR had an address of a

real JQE on an ACTION=CKPT call.
8 WAIT=NO was specified and a WAIT was required. ACTION not

serviced.
12 WAIT=YES was specified and the JQE disappeared while waiting

for the BERT lock.

On return from FETCH, CKPT, REFRESH, GETJQEADDR, FETCHNEXT, and
SETACCESS type $DOGJQE calls:
v Register 0 contains the address of the JQA returned.
v Register 1 contains the address of the JQE returned.

On return from a GETJQEADDR type $DOGJQE call:

v Register 1 contains the address of the real JQE.

On return from a QUERYLOCK type $DOGJQE call:

v Register 1 contains the PCE address of the member holding the lock if the lock
is held by this member.

Environment
v Main task (all actions are available)

v USER, SUBTASK, and FSS environments (ACTION=FETCH for READ access
only)

v $WAIT can occur.

$DOGWSCQ – Deliver or Get Workload Management (WLM) Service
Class

Use $DOGWSCQ to invoke the Workload Manager Service Class (WSC)
processing services to allow you to manipulate WLM service such as: get a copy of
the WSC from the checkpoint or remove the WSC from the checkpoint.

$DOGJQE

116 z/OS V1R4.0 JES2 Macros

Format Description

ACTION=
The function you request of the $DOGWSCQ service.

(FETCH)
Request that JES2 return the WSC for the specified service class.

(FETCH,READ)
Specifies that JES2 should return a read-only copy of the WSC.

(FETCH,UPDATE)
Specifies that JES2 should return a copy of the WSC that you can
update. JES2 locks the WSC using the block extension reuse table
(BERT) lock until you return the updated copy.

Note: UPDATE is mutually exclusive with DSERV=.

(FETCH,CREATE)
Specifies that JES2 should return a copy of the WSC that you can
update and create one if none exists yet.

(FETCHNEXT)
Specifies that JES2 put the current control block into the BERT and then
return the next BERT in the chain.

Notes:

1. You must first do a FETCH before doing a FETCHNEXT.

2. If you specify FETCHNEXT you cannot also specify SRVCLASS=.

(FETCHNEXT,READ)
Specifies that JES2 should return a read-only copy of the WSC.

(FETCHNEXT,UPDATE)
Specifies that JES2 should return a copy of the WSC that you can
update. JES2 locks the WSC using the block extension reuse table
(BERT) lock until you return the updated copy.

Note: UPDATE is mutually exclusive with DSERV=.

ÊÊ
symbol

$DOGWSCQ ,ACTION= FETCH
(,READ)

,UPDATE
,CREATE

FETCHNEXT
(,READ)

,UPDATE
RETURN
FREE
CKPT

Ê

Ê ,SRVCALSS=class
,DSERV= addr

(Rn)

,WSC=addr
,ERRET= label

(Rn)

Ê

Ê
,OKRET= label

(Rn)

ÊÍ

$DOGWSCQ

Chapter 3. JES2 Programmer Macros 117

RETURN
Specifies that JES2 should unlock the WSC, write the NEW values in the
WSC to the checkpoint, and free the work space storage.

FREE
Specifies that JES2 should free the BERTs associated with this WSCQ.

CKPT
Specifies that JES2 should write the WSC to the checkpoint.

Note: WSC= is required for CKPT.

SRVCLASS=
Specifies the service class from which JES2 obtains the WSC.

DSERV=
Specifies the address of the DSERV control block for the checkpoint version
you request JES2 to use. If you do not specify DSERV=, JES2 uses the real
CKPT.

Notes:

1. DSERV= is not allowed in the JES2 main task environment.

2. You must specify DSERV= in User, Subtask, and FSS environments.

3. The address of the DSERV control block can be obtained with either the
SSI function code 71 or the $CALL CKPTVERS service in HASCSRIC.

WSC=
For an ACTION=FETCH call, JES2 obtains and returns the address of the WSC
to the caller. The caller should not provide a work area on this type of call. For
an ACTION=RETURN or ACTION=CKPT call, the caller provides the address of
the WSC that JES2 will return.

ERRET=
Specifies a label to be branched to or a register to be branched on if a non-zero
return code is returned in R15.

OKRET=
Specifies a label to be branched to or a register to be branched on if a zero
return code is returned in R15.

Environment
v JES2 Main task only

v FETCH and FETCHNEXT for READ access is available in User, Subtask and
FSS environment

v $WAIT can occur

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Request successful.
4 Not found.

On return, register 1 contains the address of the WSC returned.

$DOM – Delete Operator Message
Use $DOM to delete an operator message.

$DOGWSCQ

118 z/OS V1R4.0 JES2 Macros

Format Description

CMB=
Specifies the address of the command message buffer (CMB) containing the
operator message to be deleted. If register notation is used the register must
contain the address of the CMB before executing the $DOM. If CMB= is not
specified register 1 is assumed to contain the address of the CMB.

Environment
v Main task.
v $WAIT cannot occur.

$DORMANT – Specify Processor is Inactive
Use $DORMANT to indicate to the JES2 dispatcher that the associated JES2
processor has completed the processing of a job or task.

Format Description

R Specifies the register which is to be used by the $DORMANT macro instruction.
If R is omitted, register 1 is used.

Note: Do not enclose the specified register in parenthesis.

CAUTION:

The $DORMANT macro instruction should never be used unless a
corresponding $ACTIVE macro instruction has been used for the same
processor.

Environment
v Main task.
v $WAIT cannot occur.

$DSPSERV – JES2 Data Space Services
Use the $DSPSERV macro instruction to call the $DSPSERV service routines to
create or delete data spaces. See “Data Space Usage” on page 395 for a
description of data spaces.

ÊÊ
symbol

$DOM
(R1)

CMB= addrx

ÊÍ

ÊÊ
symbol

$DORMANT
R=R1

ÊÍ

$DOM

Chapter 3. JES2 Programmer Macros 119

Format Description

CREATE | DELETE | EXTEND | RELEASE
Specifies whether the call to $DSPSERV is to:

v CREATE a new data space

If you specify CREATE, you must also specify BLOCKS=, NAME=, and
OWNER=.

v DELETE an existing data space

If you specify DELETE, you must also specify DSB=.

v EXTEND the size of an existing data space

If you specify EXTEND, you must also specify BLOCKS= and DSB=.

v RELEASE page of storage.

If you specify RELEASE, you must also specify BLOCKS=, DSB=, and
START=.

If you specify CREATE, you must also specify OUTNAME=.

Note: You must code one of these functions.

ALET=
Specifies either a register that contains the address of the ALET of a new data
space or the label of a storage area that contains the ALET of a new data
space. (The ALET can alternatively be obtained through a $ALESERV macro
call.)

BLOCKS=(max,init) | (max)
Specifies the number (1-524288 of 4K blocks of storage to be processed for the
data space. If you specify a register, the value in the register is the number of
4K blocks of storage JES2 will process.

Note: The upper limit, 524288 is valid for all $DSPSERV functions, but
assumes a ‘0 origin’ data space. However, because some hardware
does not support 0 origin data spaces (page at location 0 is reserved), a
reliable value of 524287 is always respected.)

ÊÊ
symbol

$DSPSERV CREATE
DELETE
EXTEND
RELEASE

,DSB= (Rn)
label

,NAME= (Rn)
label

Ê

Ê
,STOKEN= (Rn)

label
,ALET= (Rn)

label

,BLOCKS= (max,init)
(max)

Ê

Ê
,ERRET=label NO

,FPROT= YES
0

,KEY= n

Ê

Ê
,ORGIN= (Rn)

label
CURRENT

,OWNER= MASTER
,OUTNAME=area

Ê

Ê
,RELATED=label ,START=addr

ÊÍ

$DSPSERV

120 z/OS V1R4.0 JES2 Macros

Register notation requires an extra set of parenthesis as exemplified below:

Syntax for CREATE
BLOCKS=((R1),(R2))
BLOCKS=((R1),INIT)
BLOCKS=(MAX,(R2))
BLOCKS=((R1))

where:
max - the maximum size (in 4K blocks) to which the data space can be

extended
init - the initial number of 4K blocks that the data space will contain.

If you do not specify an INIT value, it default to the MAX value.

Syntax for EXTEND
BLOCKS=numblocks

where:
numblocks - the number of 4K blocks to add to the existing data space.

Maximum block size is limited by the $DSPSERV CREATE,
BLOCK=(max) value.

Syntax for RELEASE
BLOCKS=numblocks

where:
numblocks - the number of 4K blocks to be released from the existing

data space.

This keyword is not valid for DELETE and if it is specified, the macro will issue
an error message.

DSB=
Specifies the address of the data space block (DSB) for the data space to be
processed (EXTEND, RELEASE, DELETE), or where to put the data space
(CREATE).

You must specify a DSB= address for EXTEND, RELEASE, and DELETE; it is
optional for CREATE.

ERRET=
Specifies the label of an error routine that is to receive control if $DSPSERV
receives a non-zero return code.

The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful
8 An ESTAE could not be established
12 Data space services encountered a severe error
16 Catastrophic recursion error; disposition of data space

unknown. (Requested function might have completed.)
40 No ECSA storage available for a DSB
44 Unable to obtain working private storage
48 Macro was not issued with a valid function
52 Macro not issued with a valid CREATE,BLOCKS= specification
56 SRB request failed
60 MVS macro TCBTOKEN failed
64 MVS macro DSPSERV failed
68 MVS macro ALESERV failed
76 DSWA level not valid

$DSPSERV

Chapter 3. JES2 Programmer Macros 121

FPROT=
Specifies whether (YES) or not (NO) the data space is fetch protected on a
CREATE call.

This keyword is valid only for a CREATE call.

KEY=
Specifies a 1-byte value of the storage key for the data space. The key is held
in bits 0-3; bits 4-7 are ignored.

KEY= is only valid on a $DSPSERV CREATE call.

NAME=
Specifies the register that contains the address of, or the name of a storage
location that contains, the name of the data space to either be created or
deleted. This name can be useful if you need to locate the data space in a
dump taken through IPCS (interactive problem control system). Two data
spaces can not have the same name.

NAME= is only valid and required on a $DSPSERV CREATE call.

ORIGIN=
Specifies the register to contain the address of, or the name of a storage area
to contain the address of, the lowest address in the data space.

ORIGIN= is only valid on a CREATE call.

OUTNAME=
Specifies an 8-byte area into which the name of the newly created data space
is placed.

OUTNAME= is only valid on a CREATE call.

OWNER=
Specifies the owner of the data space, as follows:

Value Data Space Owned by:
AUX The JES2AUX (auxiliary) address space
CURRENT

The task currently in control (Required if SCOPE=LOCAL)
MASTER

Master scheduler main task

OWNER= is required and only valid on a CREATE call.

RELATED=
Use this keyword for self-documentation of the macro. You can use this to keep
track of the data spaces you have created or deleted. Any alphanumeric form is
valid.

START=
Specifies the beginning address in the data space of an area to be RELEASED.

START= is required and only valid on a RELEASE call.

STOKEN=
Specifies either a register that contains the address of the STOKEN value of a
new data space or the label of a storage area that contains the STOKEN value
of the new data space.

STOKEN= is only valid on a CREATE call.

$DSPSERV

122 z/OS V1R4.0 JES2 Macros

Programming Considerations
$DSPSERV functions, CREATE and DELETE, assume serialization by the caller.

Environment
v Main task limited (initialization and termination).
v MVS WAIT can occur during initialization and termination.
v Callers in AR ASC mode are supported. All data areas passed must be

addressable in primary ASC mode.

$DTEDYN – Call the Dynamic DTE Service Routines
Use the $DTEDYN macro instruction to call the dynamic DTE service routines
($DTEDYNA and $DTEDYND) located in HASPDYN that handles DTE
management and subtask attaches and detaches for the JES2 main task.

Format Description

ATTACH | DETACH
Specifies whether to call the $DTEDYNA (ATTACH) or $DTEDYND (DETACH)
service routine.

ATTACH
Informs $DTEDYNA to obtain and initialize a new DTE and to attach the
subtask for the caller.

The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful
4 Processing failed. $GETWORK failed to obtain the new

DTE storage.
8 Processing failed. The MVS ATTACH macro processing

returned a nonzero return code (returned to the caller of
$DTEDYN in register 1).

DETACH
Informs $DTEDYND to free up the DTE and to detach the subtask.

The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful

WAIT=
Specifies whether $DTEDYN should wait for subtask initialization and/or
termination.

ATTACH Processing.

ÊÊ
symbol

$DTEDYN ATTACH
DETACH NO

,WAIT= ECB
XECB

,PARM=parameter Ê

Ê ,ID=subtask-id
,DTE= addrx

(R0)
,ERRET= addrx

(Rn)

ÊÍ

$DSPSERV

Chapter 3. JES2 Programmer Macros 123

ECB
Indicates that $DTEDYNA should wait for the subtask to post the
initialization ECB.

XECB
Indicates that $DTEDYNA should $WAIT (XECB style) for the subtask to
post the initialization ECB.

NO
Indicates that $DTEDYNA is not to wait.

DETACH Processing

ECB
Indicates that $DTEDYND should wait for MVS to post the subtask
termination ECB.

XECB
Indicates that $DTEDYND should $WAIT (XECB style) for MVS to post the
subtask termination ECB.

NO
Indicates that $DTEDYND is not to wait.

PARM=
Specifies a full-word parameter to be passed to the subtask during ATTACH
processing. Do not use this keyword during DETACH processing.

ID=
Specifies the subtask identifier as defined in the $DTE control block. The
subtask ID is passed to the $DTEDYN service in register 1. If this keyword is
not specified, an assembly error will occur.

DTE=
Specifies the address of the DTE to be freed by $DTEDYND.

Note: This keyword must be specified for $DTEDYN DETACH; it is not valid for
$DTEDYN ATTACH.

ERRET=
Specifies the address of an error routine that is to get control if an error occurs
during dynamic DTE processing.

Environment
v Main task.
v $WAIT can occur in JES2 main task.
v MVS WAIT can occur during initialization and termination.

Note: The subtask could be dispatched before $DTEDYN processing completes.

$DTETAB – Build and Map the DTE Tables
Use the $DTETAB macro instruction to build the DTE tables accessed by the
$GETABLE service.

Use $DTETAB to map and generate DTE table entries.

$DTETAB entries are used to define the start of a user table ($DTETAB
TABLE=USER...) or a JES2 table ($DTETAB TABLE=HASP...), the end of a table
($DTETAB TABLE=END) or an entry in a table ($DTETAB NAME=ANANIA...).

$DTEDYN

124 z/OS V1R4.0 JES2 Macros

Note: The format description that follows breaks the macro into a boundary form
(the form that starts or ends a table) and an entry form (the form that
defines each table entry).

Format Description

Boundary Form

Entry Form

NAME=
Specifies the subtask name that HASP messages use to identify the subtask to
the operator.

ID=
Specifies the subtask identifier used in the $DTE DSECT.

EPNAME=
Specifies the entry point name used by $DTEDYNA for the MVS IDENTIFY
macro call.

EPLOC=
Specifies the offset into the specified control block and, optionally, the control
block name from which the entry point address is obtained. The control block
name defaults to either MODMAP (if this macro is used to build a HASP DTE
table) or UCT (if this macro is used to build a USER DTE table). If the ‘control
block name’ is specified here it overrides either default value.

ÊÊ
symbol

$DTETAB TABLE= USER
(,NOENTRY)

HASP
(,NOENTRY)

END
DYNAMIC

ÊÍ

ÊÊ
symbol

$DTETAB NAME=subtask-name
,ID=subtask-id

Ê

Ê
,EPNAME=entry-point-name

Ê

Ê
,EPLOC= eploc-offset

(,control-block)

Ê

Ê
,HEAD= type-head-offset

(,control-block)

Ê

Ê
0

,WORKLEN= work-area-len
NO

,GEN= YES
NO

,REQD= YES

Ê

Ê
NO

,STAE= YES
YES

,SZERO= NO

ÊÍ

$DTETAB

Chapter 3. JES2 Programmer Macros 125

HEAD=
Specifies the offset and control block name of the subtask type chain head. The
control block name defaults to either HCT (if this macro is used to build a HASP
DTE table) or UCT (if this macro is used to build a USER DTE table).

WORKLEN=
Specifies the length of the subtask work area extension. If specified, this length
is added to the DTE length (DTELEN) when $DTEDYNA obtains DTE storage.
WORKLEN=0 (no storage) is the default.

GEN=
Specifies whether (YES) or not (NO) the subtask is ATTACHed during IRMVS
processing. YES indicates that the DTE1FLAG flag, DTE1AUTO is set on to
indicate subtask ATTACH. GEN=NO is the default.

REQD=
Specifies whether (YES) or not (NO) this subtask is essential to JES2
operation. If yes, JES2 also issues a non-recoverable abend in the subtask
(that is, CALLRTM RETRY=NO,...) to cause the JES2 maintask to terminate
with an abend $Z03. The default is REQD=NO.

STAE=
Specifies whether (YES) or not (NO) the subtask is DETACHed if STAE is
specified on the DETACH macro. YES indicates that the DTE1FLAG flag,
DTE1STAE is set on to indicate subtask DETACH. STAE=NO is the default.

SZERO=
Specifies whether (YES) or not (NO) the DTEFLAG1 flag, DTESUB0, is set on
at the MVS ATTACH call. YES indicates that the DTEFLAG1 flag, DTE1SUB0 is
set on. SZERO=YES is the default.

TABLE=
Specifies either the beginning of a USER or HASP DTE table (TABLE=USER or
TABLE=HASP, respectively) or the end of a previously specified table
(TABLE=END). The NOENTRY operand indicates that the ENTRY statement
will not be generated for this specific DTE table. If TABLE= is specified, all other
keywords on this macro are ignored. DYNAMIC specifies that this is a dynamic
table.

Environment
v JES2 main task or during JES2 initialization or termination.
v $WAIT is not applicable – this macro generates a DSECT or a static table entry;

it does not generate executable code.

$DVIDBLD – Build a Device Name from a Device Identifier
Use the $DVIDBLD macro to convert a binary device identifier (devid) into a
character device name

Format Description

DEVID=
Specifies a 3-byte field containing the device id. (See field name, DCTDEVID, in
the DCT for possible values).

ÊÊ
symbol

$DVIDBLD DEVID= ,DEVNAME=
,JQE=addrx ,LENGTH=

ÊÍ

$DTETAB

126 z/OS V1R4.0 JES2 Macros

DEVNAME=
The field in which JES2 will return the character device name. This field must
be a minimum of 8 bytes.

JQE=
Specifies the address of a JQE to determine if this is an INTRDR, STCINRDR,
or TSUINRDR.

Note: Be aware, if you specify JQE=, this macro alters the contents of register
2.

LENGTH=
Specifies the length of the DEVNAME= field. If you do not specify this length, it
defaults to to the assembled length of the field.

Environment
v JES2 main task or user address space

v 31-bit addressing mode

v Caller can be in AR ASC mode

v MVS WAIT OR JES2 $WAIT cannot occur

$ENTRY – Provide Entry to JES2 Assembly Module
Use $ENTRY to identify, to JES2, entry points in an assembly module such as an
installation-provided exit routine. Each exit routine must use $ENTRY to define all of
the routine’s entry points.

Format Description

ÊÊ
symbol

$ENTRY
(R8)

,BASE= (Rn)
(R1,R2,...)
NONE

NO
,CSECT= YES

Ê

Ê
YES

,ENTRY= NO
,EYECATCHER=eye_catcher STD

,LINKAGE= MTENONLY
NONE
PC

Ê

Ê
R15

,REGUSE= (Rn)

NO
,NOTRACE

,SAVE= YES
(,TRACE)

Ê

Ê ,BASESET= YES
NO

ÊÍ

$DVIDBLD

Chapter 3. JES2 Programmer Macros 127

symbol
Specifies an entry point name. You must code this parameter. If you code
ENTRY=YES, $ENTRY creates an entry in the assembler ESD for symbol.

Note: Be certain the value specified is different from any symbol specified on
other $ENTRY or $MODULE statements.

BASE=
Specifies the registers that provide addressability to the entry point. If two or
more registers are specified, they must be separated by commas and enclosed
in parentheses. If BASE is not specified, BASE=R8 is assumed. A USING
statement is generated using the specified registers. If BASE=NONE is
specified then no code base register is assumed or set up by $ENTRY.

$ENTRY does not load the base registers unless SAVE=YES is also specified.
If SAVE=NO is specified (or defaulted), then it is your responsibility to ensure
that each base register is loaded with the entry point address.

CSECT=
Specifies whether a CSECT statement should be generated. If you specify
CSECT=YES, the assembled module will include the JES2 version number and
the date and time of the assembly. $ENTRY also creates an entry in the MIT
entry table.

IBM recommends that you do not define multiple CSECTs in any JES2
assembly modules including installation exit routines. The default is NO.

ENTRY=
Specifies whether $ENTRY is to generate an assembler ENTRY statement for
the symbol parameter that is coded on the $ENTRY macro.

YES
$ENTRY is to generate an ENTRY statement and place an entry in the MIT
entry table.

NO
$ENTRY is to place an entry in the MIT entry table but is not to generate an
ENTRY statement.

If you code the CSECT= parameter, omit the ENTRY= parameter.

EYECATCHER=
Specifies an eyecatcher that $ENTRY is to include in the assembled module.
An eyecatcher is a character string, typically the module name or entry point
name, that makes it easier to identify the module in a storage dump. The
eyecatcher appears near the module entry point.

You can specify any value that is valid as an operand of an assembler DC
instruction. For example:

...,EYECATCHER=C’A_STRING’,... generates DC C’A_STRING’

...,EYECATCHER=CL20’MODULENAME’,... generates DC CL20’MODULENAME’

If you specify LINKAGE=MTEONLY or LINKAGE=NONE, omit the
EYECATCHER= parameter.

LINKAGE=
Specifies the type of entry point environment $ENTRY is to generate and
causes JES2 to build an entry (MTE) in the module information table (MIT).

MTEONLY
$ENTRY generates a USING instruction for the symbol parameter. The

$ENTRY

128 z/OS V1R4.0 JES2 Macros

register specified on the USING Instruction is the register specified on
BASE= or the default, register 8. Because $ENTRY does not define the
symbol parameter to the assembler, your program must do so.

NONE
$ENTRY defines the symbol parameter to the assembler as a label and
generates a USING instruction for that label. The register specified on the
USING Instruction is the register specified on BASE= or the default, register
8.

PC
Specifies that the programs that invoke this entry point do so by using a
stacking PC instruction.

$ENTRY defines the symbol parameter to the assembler as a label and
generates a USING instruction for that label. The register specified on the
USING Instruction is the register specified on BASE= or the default, register
8. $ENTRY uses the register specified on REGUSE= or the default, register
15, to establish initial addressability.

STD
Specifies that the programs that invoke this entry point do so by using a
branch linkage. The register identified by the REGUSE= parameter, or
register 15 when you omit REGUSE=, must contain the entry point address.

$ENTRY defines the symbol parameter to the assembler as a label and
generates a USING instruction for that label. The register specified on the
USING Instruction is the register specified on BASE= or the default, register
8.

REGUSE=
Specifies either a register that contains the entry point address or a register that
$ENTRY can use to establish initial addressability. The default is register 15.

v If you omit the LINKAGE= parameter or code LINKAGE=STD, $ENTRY
requires that a register contain the entry point address. You code the
REGUSE= parameter to identify that register. If you omit REGUSE=, register
15 must contain the entry point address.

v If you code LINKAGE=PC, $ENTRY uses the register specified by
REGUSE=. If you omit REGUSE=, $ENTRY uses register 15.

SAVE=
Specifies whether (YES) or not (NO) a $SAVE should be generated as part of
the linkage. An optional second parameter specifies whether (TRACE) or not
(NOTRACE) the $SAVE should be traced. SAVE=NO is the default.

Note: This keyword is only valid for LINKAGE=STD.

SETBASE=
Specifies whether (YES) or not (NO) the base registers specified on BASE= are
to be set. If YES is specified then the value for the first base register is
assumed to be in REGUSE. For LINKAGE=PC, the macro sets the address of
label in REGUSE. The default for this keyword is YES if LINKAGE=PC or
SAVE=YES was specified and NO otherwise.

Note: This keyword is only valid with LINKAGE=STD or LINKAGE=PC.

Environment
v JES2 Main task, JES2 subtask, user environment or FSS environment.
v $WAIT not applicable.

$ENTRY

Chapter 3. JES2 Programmer Macros 129

$ENVIRON – Set Assembly Environment
Use $ENVIRON to set the assembly environment for a JES2 module.

Format Description

POP | PUSH | SET
Specifies the purpose of this $ENVIRON call as follows:

POP
Indicates that JES2 is to restore the prior (PUSHed) assembly environment.

PUSH
Indicates that JES2 is to set a new assembly environment and save the old
assembly environment.

SET
Indicates that JES2 is to modify the assembly environment.

ENVIRON=(DOC | FSS | IPCS | JES2 | SUBTASK | USER [,modifier])
Specifies the assembly environment JES2 sets as follows:

DOC Documentation-only environment (HASPDOC)

FSS Functional subsystem (HASPFSSM)

IPCS Interactive problem control system (IPCS)

JES2 JES2 main task

MONITOR
JES2 monitor address space

SUBTASK
JES2 subtask

USER User environment

modifier
This second, optional specification, can be added to any ENVIRON=
specification, as a modifier for the environment. For example,
ENVIRON=(JES2,INIT) - INIT indicating initialization or TERM indicating
termination). JES2 does not check this value and can be set to any
user-defined value. However, modifier is only valid for SET and PUSH
calls.

ÊÊ symbol $ENVIRON POP
PUSH
SET

Ê

Ê
,ENVIRON= DOC

(FSS ,modifier)
IPCS
JES2
MONITOR
SUBTASK
USER

,
RELATED=text

Ê

Ê
NO

,SETR11= YES
,WORKREG= (Rn)

ÊÍ

$ENVIRON

130 z/OS V1R4.0 JES2 Macros

|
|

RELATED=
Specifies a related $ENVIRON service call. This parameter is for your
documentation purposes only and not checked by JES2.

SETR11=YES | NO
Specifies whether (YES) or not (NO) JES2 will set the address of the
environment-related control block type (for example, HCCT for USER or HCT
for JES2) in R11. SETR11=NO is the default.

WORKREG=
Specifies a work register (R1-R10 or R12-R15) JES2 in the use when
computing the address placed in R11.

Environment
v Any assembly environment.

$ERROR – Indicate Catastrophic Error
Use $ERROR to indicate that a catastrophic error has occurred and to abend the
JES2 main task, a task executing in the user address space, or an FSS address
space.

In the JES2 main task, the macro instruction causes a $HASP095 message to be
printed out on the console by the JES2 ESTAE routine, which receives control on
the ABEND.

Notes:

1. The assembly environment dictates the parameters required for this macro. The
results of the macro depends on the execution environment.

2. The $ERROR macro requires that you also issue $MODULE with the $ERPL
mapping specified.

Format Description

symbol
A 1- to 4-character symbol. If $ERROR is issued from either the JES2 (main
task) environment or the FSS environment, symbol is required. In the user
environment, symbol is optional.

err-code
Specifies the JES2 catastrophic error code. It is a 1- to 4-character symbol
(usually a letter and two digits) preceded by a dollar sign ($) when printed as
the error code in the message. The err-code is ignored in the user environment.

ÊÊ
symbol

$ERROR err-code
RECOVER

, TERMINATE

, TEXT=text
RTEXT=relexp

Ê

Ê
NO

,RIPL= YES
,REASON= addrx

(Rn)
MEMBER

,DUMP= MAS

Ê

Ê
MAIN

,RECVOPTS=

ÊÍ

$ENVIRON

Chapter 3. JES2 Programmer Macros 131

option-code
Specifies whether recovery should take place. This can be coded as follows:

RECOVER (default)
Recovery is to be attempted; that is, it is possible to recover from this error.

TERMINATE
Recovery is not to take place and an abend is to occur; that is, it is
impossible to recover from this error.

TEXT=
Specifies the text to be included in the catastrophic error message. A DC
statement is generated for this character string. If you specify a character string
of greater than 42 characters, JES2 will truncate it to 42 characters. This text is
used in the content of the $HASP088 message and is required in the user
environment.

Specify the text enclosed within single quotes or as (R0) if R0 has the address
of the text string in the form: AL1(length),C’text’. Use (R0) in the JES2
environment only.

RTEXT=
Specifies the symbol used on another $ERROR macro instruction invocation
from which the text for this catastrophic error message is to be taken. This is
used when there is an existing $ERROR macro instruction invocation with the
desired text. This is ignored in the user environment.

RIPL=
Specifies whether the system needs an IPL to recover from this error. This is
ignored except in the main task environment. This can be coded as follows:

YES
The system needs an IPL.

NO
The system does not need an IPL.

REASON=
Indicates a value that is only used in the user environment and specifies the
reason code that appears in the $HASP095 error message.

addrx
Indicates the address of a fullword field that contains the reason code.

Rn
Indicates a register that contains the reason code.

DUMP=
Indicates whether all members of the MAS are to be dumped (DUMP=MAS) or
just this member (DUMP=MEMBER). The default is DUMP=MEMBER.
RECVOPTS applies.

Note: This keyword is valid in main task environment only.

RECVOPTS=
Indicates the RECVOPTS option for this $ERROR (JES2 main task). The
default is RECVOPTS=MAIN.

Environment
v JES2 main task, JES2 subtask, FSS, or user environment.
v Will ABEND with MVS system code X'02D'.
v Will ABEND with X'0F7' in the user environment.

$ERROR

132 z/OS V1R4.0 JES2 Macros

$ESTAE – JES2 Error Recovery Environment
Use $ESTAE to generate the calling sequence to one of several JES2 recovery
service routines for creating, replacing or cancelling the current error recovery
environment. Each error recovery environment specifies an error recovery routine
that will gain control for a JES2 detected error. Each error recovery routine is
represented by a processor recovery element (PRE) in the main task environment,
or by a TCB recovery element extension (TRX) in the user environment.

Use this macro to:

v Create a new JES2 error recovery environment by establishing another recovery
routine

v Replace the current error recovery routine with a different routine

v Cancel the accessibility of the current error recovery routine

If you issue a $ESTAE macro instruction in the main task environment with a
recovery address (RECADDR=) specified within code that is logically bracketed by
$SAVE and $RETURN macros, the PRE created is cancelled automatically in
$RETURN processing.

Format Description

action-code
Specifies if the current recovery environment is to be cancelled or replaced as
follows:

CANCEL
Cancel the current recovery environment.

REPLACE
Replace the current recovery environment with a new one. REPLACE can
only be specified in the main task environment.

If you omit this operand, a new recovery environment is created and stacked
LIFO on the appropriate stack.

BASE=
Specifies the address of the code base to be associated with this recovery
environment. This address is placed in the PRE for use by the recovery routine.
This keyword should be coded only if used by the specified recovery routine.
BASE cannot be specified in the user environment.

NAME=
Specifies the 8-character identifier to be associated with the PRE created when
you have specified either REPLACE or nothing as the first positional operand in
the main task environment. If you omit this parameter, the identifier will default
to the label of the $ESTAE macro call. If you have no label specified, it will
default to a system-generated identifier. NAME= cannot be specified in the user
environment.

ÊÊ
symbol

$ESTAE
action-code BASE=addrx ,NAME=symbol

Ê

Ê
(R1)

,RECADDR= rx-addr
RETRY=rx-addr

ÊÍ

$ESTAE

Chapter 3. JES2 Programmer Macros 133

RECADDR=
Specifies the address of the recovery routine to gain control if JES2 detects an
error.

Code this keyword, based on the environment in which you are running.

v Main task environment

In the main task environment, this keyword is optional. This can be specified
as an rx-addr expression or using register notation (R2 through R12). If you
do not specify this keyword, register 1 (the default) must contain the address
of the recovery routine. If you specify the address as 0, recovery is
suspended.

Your recovery routine should use the $SETRP macro to request a retry or to
percolate the error before returning to the caller.

v User environment

In the user task environment, this keyword is required. Specify this keyword
using an A-type address.

If the RETRY keyword is also coded, the recovery routine receives control
from JES2’s user environment ESTAE. Your recovery routine cannot use the
SETRP or $SETRP macros to request a retry or to percolate the error. After
your recovery routine returns to its caller, JES2 decides whether to retry or to
percolate the error.

If the RETRY keyword is not coded, the recovery routine receives control via
an MVS SETRP request from the user environment ESTAE. The recovery
routine can either resume processing within the main routine, or it can return
to the main routine’s caller.

RETRY=
Specifies the address of a retry routine to be associated with this $ESTAE in
the main task or user environment.

Code this keyword, based on the environment in which you are running.

v Main task environment

In the main task environment, this keyword is optional. This can be specified
as an rx-addr expression or using register notation (R2 through R12).

This address is placed in field PRERESUM in the PRE for use by the
recovery routine. The recovery routine should use contents of field
PRERESUM when designating a retry address, using the $SETRP macro.

v User environment

This parameter is optional. Specify this keyword using an A-type address.
JES2 gives control to the retry routine via an MVS SETRP request.

Notes:

1. If you code either CANCEL or REPLACE on the $ESTAE macro, there must be
a current PRE at the current save area level or JES2 catastrophic error $ER1 is
issued and JES2 terminates.

2. In the main task environment, $ESTAE assumes addressability to the error
recovery area (ERA) that is associated with the error that caused the recovery
routine to be entered. Therefore, be certain to add the $ERA DSECT to the
$MODULE macro for any routine for which you provide error recovery.

Environment
v User task.
v Main task.
v $WAIT cannot occur.

$ESTAE

134 z/OS V1R4.0 JES2 Macros

$EXCP – Execute JES2 Channel Program
Use $EXCP to initiate JES2 input/output activity.

Format Description

dct
Specifies either the address of a pointer to a device control table (DCT) or the
address of a DCT. The DCT represents a device on which input/output activity
is to be initiated. If dct is written as an address, it represents the address of a
fullword which contains the address of the DCT. If dct is written using register
notation (either regular or special register notation), it represents the address of
the DCT. If register notation is used, the address must have been loaded into
the designated register before the execution of this macro instruction.

This parameter is valid only when this macro is called in the JES2 main task
environment.

CBTYPE=
Specifies the type of the JES2 control block that contains the IOB. This
parameter is only valid in the user environment and is required when the macro
is called from that environment.

SDB
indicates a subsystem data set block

SJIOB
indicates a subsystem job input/output block

Note: In the user environment, issue a USING for HCCT before invoking this
macro. Then, if you specify:

v CBTYPE=SDB, issue a USING for SDB before invoking this macro
v CBTYPE=SJIOB, issue a USING for SJIOB before invoking this macro

MTTRVAL=
Specifies whether (YES) or not (NO) a $CALL to MTTRVAL is needed to
validate the module track track record (MTTR) in the DCT. If you set
MTTRVAL=NO, thereby overriding JES2’s verify call when performing this
$EXCP call, be certain that you have previously issued a $CALL to verify the
MTTR.

TYPE=VR
Specifies that I/O is to be initiated through the EXCPVR macro instruction. If
this parameter is omitted, EXCP is used.

This parameter is valid only when this macro is called in the JES2 main task
environment.

WAIT=
Specifies whether the $EXCP service routine is to cause the routine issuing this

ÊÊ
symbol

$EXCP dct-addrx
(R1) ,CBTYPE= SDB

SJIOB

Ê

Ê
YES

,MTTRVAL= NO
,TYPE=VR NO

,WAIT= YES

ÊÍ

$EXCP

Chapter 3. JES2 Programmer Macros 135

macro instruction to wait ($WAIT IO) until the I/O operation has been completed
(WAIT=YES), or is to return control when the request has been scheduled
(WAIT=NO or parameter omitted.)

If WAIT=YES is specified, the service routine exits after normal I/O completion.
If any I/O error is detected, the service routine issues the $IOERROR macro
instruction, which issues the JES2 I/O error message, $HASP094, then returns
control to the $EXCP issuer. On return, register 1 points to the I/O buffer, and
the condition code mask is set as follows:

CC=1
The I/O completed without error.

CC=4
Permanent I/O error was encountered.

This parameter is valid only when this macro is called in the JES2 main task
environment.

Environment
v Main task or user environment.
v $WAIT can occur (if you code WAIT=YES on the macro).

$EXIT – Provide Exit Point
Use $EXIT to establish an exit point in an assembly module. The assembly
environment active at the time of the $EXIT invocation determines the exit effector
that JES2 will use and the execution environment that JES2 assumes for the exit
routines it will call.

Format Description

symbol
Although a label for this macro instruction is not required, it is highly
recommended for tracing purposes.

exitid-code
Specifies the numeric id (0-255) of this $EXIT macro.

JOBMASK=
Specifies the address, or a register that contains the address, of a 256-bit job
exit mask in the job control table, of which each bit corresponds to an exit
identification number; bit 0 corresponds to Exit 0, bit 1 corresponds to Exit 1, bit
2 to Exit 2, and so on. (This means, of course, that bit 2 corresponding to Exit 2
is really the third bit in the mask, and so on.) Initially, when the JCT is created,

ÊÊ
symbol

$EXIT exitid-code
,JOBMASK= (Rn)

relexp

Ê

Ê
,NOENTER= (Rn)

relexp
,TYPE= TEST

ENTER
YES

,AUTOTR= NO

Ê

Ê
4

,MAXRC= code

ÊÍ

$EXCP

136 z/OS V1R4.0 JES2 Macros

all the bits in the job exit mask are set to one. Use this operand only if the exit
point is job-related, because the mask is used to determine whether the exit
should be taken for a given job.

NOENTER=
Specifies a label to be branched to or a register to be branched on if the exit is
not invoked (either because the bit for the exit is not on in the field specified in
JOBMASK or because the exit is inactive). If you code TYPE=ENTER, do not
code NOENTER.

TYPE=
Specifies how the exit effector is to treat this exit point.

If this parameter is omitted, the status of the exit point is to be determined and,
if the exit is enabled, the exit effector is called to invoke the appropriate
installation exit routine(s).

TEST
The exit effector tests the status of the exit point, and the exit effector sets
a condition code as follows:

CC=0
Either the specific job mask bit for this exit is 0 or the exit id is not
enabled (that is, no exit routines are to be called).

CC=1
The exit id is enabled but tracing is disabled.

CC=2
Both the exit id and tracing are active.

ENTER
The exit routine is to be entered through the exit effector without checking
the status of the exit point. A $EXIT macro instruction should be coded with
TYPE=TEST to confirm exit point status before coding a $EXIT macro with
TYPE=ENTER.

AUTOTR=
Specifies whether tracing for this exit point is to be automatically provided by
the exit effector. Possible values are as follows:

YES
YES specifies that tracing occurs if trace ID 13 is turned on (via a $TRACE
command), and either the EXITnnn initialization statement specified
TRACE=YES or the operator has entered a $T EXITnnn, TRACE=Y
command for this exit point.

NO
No tracing takes place.

MAXRC=
Specifies the maximum acceptable return code to be set by the installation exit
routine(s). If this parameter is omitted, the default is 4.

Environment
v Main task, subtask, user, or FSS address space.
v $WAIT can occur if an installation exit routine issues a $WAIT or invokes a

routine that issues a $WAIT.

$EXIT

Chapter 3. JES2 Programmer Macros 137

$EXTP – Initiate Remote Terminal Input/Output Operation
Use $EXTP to initiate a remote terminal or network device input/output action or
operation.

Format Description

type
Specifies the type of operation as follows:

OPEN
Initiate processing

GET
Receive one record

PUT
Send one record

CLOSE
Terminate processing

NCLOSE
Abnormally terminate processing

READ
Receive one NJE record

WRITE
Send one NJE record

DCT=
Specifies either a pointer to a DCT or the address of a DCT that represents the
remote terminal device; if a read or write, it represents a line DCT. If dct is
written as an address, it represents the address of a fullword, which in its three
rightmost bytes contains the address of the remote terminal device DCT. This
word must be located on a word boundary in storage. If dct is written using
register notation (either regular or special register notation), it represents the
address of the remote terminal device DCT.

PARM=
If type specifies either OPEN, CLOSE, NCLOSE, READ, or WRITE, this
parameter should not be specified. If type specifies GET, this parameter
specifies the address of an area into which the input record will be placed. The
input area must be defined large enough to contain the largest record to be
received.

If the type-code is specified as PUT, this keyword specifies the address of a
parameter area containing a CCW command code which contains the carriage
control (or stacker select), the data length, and the starting address of the data
in the following format:
AL1 CCW command word
AL3 Data length

ÊÊ
symbol

$EXTP type-code ,DCT= dct-addrx
(R1)

Ê

Ê
,PARM= loc-addrx

(R0)

ÊÍ

$EXTP

138 z/OS V1R4.0 JES2 Macros

AL4 Starting address

If register notation is used, the appropriate address must be loaded into the
designated register before the execution of this macro instruction.

On return, the condition code is set as follows:

When type is OPEN,PUT,CLOSE,NCLOSE,READ,WRITE

CC>0
Successful completion

CC=0
Unsuccessful completion

When type is GET

CC>0
Successful GET processing

CC=0
Unsuccessful GET processing

CC<0
End-of-file received

Environment
v Main task.
v $WAIT can occur.

$FRECEL – Free an Extended Common Storage Area (ECSA) Cell
Use $FRECEL to return a single or multiple storage area(s) to the cell pool.

Format Description

CELL=
Specifies a label, or a register that contains the address, of the ECSA storage
cell (previously obtained by a $GETCEL) to be freed. If register notation is
used, the designated register must be loaded with the address of the storage
cell before this macro is issued. If this operand is omitted, CELL=(R1) is
assumed.

Notes:

1. The CELL= keyword is used to free a single cell.

2. The storage cell to be freed must have, as its first word, the address of the
CCE associated with the storage area. The proper form for this address is
obtained by the execution of a $GETCEL macro instruction and should
remain unaltered.

ÊÊ
symbol

$FRECEL
(R1)

CELL= label
Rn

KEY1= label
(Rn) KEY2= label

(Rn)

ÊÍ

$EXTP

Chapter 3. JES2 Programmer Macros 139

3. Either use the CELL= keyword or KEY1= and/or KEY2=. The CELL= and
KEYn= keywords are mutually exclusive.

KEY1=
Specifies a label, or register that contains the address, of a key value (as set by
the KEY1= keyword on the $GETCEL macro) of the ECSA storage cells that
are to be freed. All cells with the same KEY1= value will be freed. If you specify
KEY1=, KEY2= is not required.

KEY2=
Specifies a label, or register that contains the address, of a key value (as set by
the KEY2= keyword on the $GETCEL macro) of multiple ECSA storage cells
that are to be freed. KEY2= further specifies that a second key match is
required to free all ECSA cells matching both the KEY1= and KEY2= values. Do
not specify KEY2= unless you also specify KEY1=; however, KEY2= is not
required.

Environment
v JES2 main task, JES2 subtask, FSS, or user environment.
v $WAIT cannot occur.

$FRECMB – Free a Console Message Buffer
Use $FRECMB to return a console message buffer to the free queue.

Format Description

CMB=
Specifies the address of the console message buffer to be placed on the free
queue. If register notation is used, the address of the console message buffer
must be loaded into the designated register before executing this macro
instruction.

Environment
v Main task.
v $WAIT cannot occur.

$FREEBUF – Return a JES2 Buffer to the JES2 Buffer Pool
Use $FREEBUF from the JES2 main task, user, or FSS environments to return a
JES2 buffer to the JES2 buffer pool.

ÊÊ
symbol

$FRECMB CMB= addrx
(R1)

ÊÍ

$FRECEL

140 z/OS V1R4.0 JES2 Macros

Format Description

buffer
Specifies either a pointer to a buffer or the address of a buffer to be returned to
the buffer pool as follows:

v If buffer is written as an address, then it represents the address of a full word
which contains the address of the buffer to be returned in its three rightmost
bytes.

v If buffer is written using register notation (either regular or special register
notation), then it represents a register containing the address of the buffer to
be returned.

v If register notation is used, the address must have been loaded into the
designated register before the execution of this macro instruction.

Note: If you code TYPE=, you must specify the address of the buffer as the
value of A=.

MULT=
Indicates that the specified buffer is the first of a chain of buffers, linked through
their BUFCHAIN fields. If MULT=YES is specified, the entire chain is returned to
the buffer pool. If the parameter is omitted, only the specified buffer is returned
to the pool. MULT=YES is not supported when TYPE=UNPROT is specified.

REGS=
Specifies whether (SAVE) or not (USE) to save contents of the caller’s registers
passed to the $FREEBUF routine. REGS=SAVE is the default.

TYPE=
This parameter is only valid from the user environment. It returns the buffer
from a specific subpool.

PROT
Return a protected user I/O buffer.

UNPROT
Return an unprotected user I/O buffer.

CB
Return a user control block buffer.

A=
Specifies the starting address of the buffer to be returned. This address is
loaded into register 1.

CAUTION:

The specified buffer(s) must have been obtained by a $GETBUF macro
instruction. Otherwise, the action of the macro instruction is unpredictable.

ÊÊ
symbol

$FREEBUF
buffer-addrx
(R1)

NO
,MULT= YES

Ê

Ê
SAVE

,REGS= USE
UNPROT

,TYPE= PROT
CB

,A= addrx
(R1)

ÊÍ

$FREEBUF

Chapter 3. JES2 Programmer Macros 141

TYPE= and A= apply only to the user environment and should be omitted in the
JES2 main task environment.

Environment
v Main task, subtask, user, or FSS environment.
v $WAIT cannot occur.

$FRELOK – Free the MVS CMS Lock, LOCAL, or JES2 Job Lock
Use $FRELOK to free the CMS lock, LOCAL, or JES2 job lock obtained via the
$GETLOK macro instruction, and specify any JES2 follow-up processing.

Format Description

TYPE=
Specifies the lock to be freed as follows:

CMS (default)
The cross-memory services lock is freed. All other operands are ignored.

LOCAL (valid in the HASPFSSM environment only)
The local lock is freed. All other operands are ignored.

JOB (valid in the JES2 main task only)
The JES2 job lock is freed; you must specify a job queue element address
(JQE=).

JQE=
Specifies the address of a fullword containing the address of the JQE.

POST=
Specifies whether (YES) or not (NO), JES2 should issue a $#POST when the
indicated lock is freed.

Notes:

1. POST= is only valid if you code TYPE=JOB.

2. If you specify POST=NO, JES2 does not issue a $#POST, possibly causing
SYSOUT to not be selected by ready devices. Therefore, if you do specify
POST=NO, do so only if:
v No JOEs or null data sets were created for the job or
v Only spin data sets exist for the job.

TRACE=
Specifies whether (YES) or not (NO) a rolling trace entry should be created
when the indicated lock is freed.

WAIT=
WAIT=NO (NO is the default) results in the unlocking of the JQE being
automatically deferred if:

ÊÊ
symbol

$FRELOK
CMS

TYPE= LOCAL
JOB,JQE=relexp

NO
POST= YES

Ê

Ê
YES

TRACE= NO
NO

WAIT= YES

ÊÍ

$FREEBUF

142 z/OS V1R4.0 JES2 Macros

v A real JQE or a READ mode JQA is provided via the JQE= parameter and
the BERT lock is not available.

v An UPDATE mode JQA is provided and it takes more BERTs to hold the data
for the job than it would when the UPDATE mode JQA is obtained and there
aren’t enough BERTs to satisfy the request.

The deferred request is handled via $DILBERT. The caller is not notified that
the unlocking has been deferred.

Environment
v Main task and functional subsystem (HASPFSSM).
v $WAIT can occur.

$FREMAIN – Branch-Entry FREEMAIN Services
Use $FREMAIN to free an area of storage obtained via MVS GETMAIN or
$GETMAIN services.

Format Description

type-code
Identifies the type of GETMAIN/FREEMAIN request. You can only specify an
unconditional FREEMAIN request.

CAUTION:

If the area of storage referred to has not been obtained via MVS GETMAIN
or $GETMAIN services before this point, your subsystem will abend.

The way to specify requests is as follows:

R or RU or U – An unconditional FREEMAIN request.

LV=
Specifies the length of the area to be obtained or freed. This value is loaded
into register 0. When this value is coded by way of register format, the subpool
may be specified in the high order byte of the register.

SP=
Identifies the subpool number. Subpool zero is the default if no subpool is
specified or the subpool is not specified in the high order byte of the LV=

ÊÊ
symbol

$FREMAIN
type-code

,LV= value
(R0)

Ê

Ê
,SP=absexp ,A= addrx

(R1)
1

,KEY= key-value
PSW
TCB

SAVE
,REGS= USE

Ê

Ê
NO

,TCB= YES
JOBSTEP
HIGH

ÊÍ

$FRELOK

Chapter 3. JES2 Programmer Macros 143

parameter. This parameter must be specified if you want to free an entire
subpool. (In that case, do not code the A= parameter.)

A=
Specifies the starting address of the storage to be freed. This is done either by
loading the address into register 1 and coding R1 as the value of A=, or by
specifying the address itself. This address is loaded into register 1. This
parameter is required unless you need to free an entire subpool, in which case
you specify the SP= parameter and not the A= parameter. This keyword applies
to the JES2 main task environment.

For the user environment, specifies the address of the TCB associated with the
storage to be freed; this parameter is required for this environment.

KEY=
Specifies the key of the storage you want to free. The default is “1”. Specifying
“TCB” indicates to use the current TCB. This keyword applies to the user
environment. Specifying “PSW” is valid for only the user environment.

REGS=
Specifies whether (SAVE) or not (USE) to save the contents of the caller’s
registers. This keyword is valid only in the user environment. REGS=SAVE is
the default.

TCB=
Indicates which TCB is associated with the storage that is to be freed.

YES
Specifies that the TCB to be used has its address in the first word of the
storage to be freed.

NO
Specifies that the TCB to be used is the jobstep TCB. If there is no jobstep
TCB, then the current TCB is used. This is the default.

JOBSTEP
Specifies that the jobstep TCB is to be used.

HIGH
Specifies that the highest TCB In the address space (whose address is in
ASXBFTCB) is to be used.

Environment
v Main task or user address space.
v $WAIT cannot occur.

$FREQC – Free Quick Cell
Use $FREQC to free the storage obtained for the quick cells.

$FREMAIN

144 z/OS V1R4.0 JES2 Macros

Format Description

TYPE=
Specifies the type of quick cells that are to be freed.

type-code
Specifies the type code as defined in the $QCTGEN macro for the quick
cell to be freed.

(R0)
Specifies that register 0 contains the quick cell type-code as defined in the
$QCTGEN macro. The two low-order bytes of the register must contain the
type-code and the two high-order bytes must be zeroed.

Note: This keyword must be specified or an error will occur at assembly
time.

NUM=
Specifies the number of quick cells to be returned to the quick cell pool.

nnn
Specifies the number (1-255) of quick cells. The value assigned to NUM=
must not exceed the specification of QCTLIMIT; exceeding this value
causes an execution error (F01 FSI catastrophic error), and the $HASP750
message is issued. The default is 1.

(Rn)
Specifies the register where the number of quick cells is held.

STACK=
Specifies whether the quick cells should be dechained or chained together. The
chaining field offset is specified in the QCT.

YES
Specifies that the quick cells specified by this macro are taken off a stack
identified by the QCT for the specified type-code.

NO
Specifies that the quick cells specified by this macro are chained together
and can be freed one at a time while progressing through the chain.

CHAIN=
Specifies the register that contains the address of the first cell of the chain of
quick cells that are to be freed. Register 0 and 1 cannot be used. This keyword
must be coded if STACK=NO is coded or allowed to default.

Environment
v Functional subsystem (HASPFSSM).
v $WAIT not applicable.

ÊÊ
symbol

$FREQC TYPE= type-code
(R0) ,NUM= nnn

(R1)

Ê

Ê
NO

,STACK= YES
,CHAIN= addrx

(R2)

ÊÍ

$FREQC

Chapter 3. JES2 Programmer Macros 145

$FREUCBS – Free UCB Parameter List Storage
Use $FREUCBS to free UCB parameter list (UPL) storage and, optionally, to unpin
the corresponding UCB.

Format Description

UPLADDR=
Specifies the address of the UCB parameter list that is to be freed. If register
notation is used, the register must be initialized with the UCB parameter list
address before the execution of the macro.

UNPIN=YES|NO
Specifies whether the system is (YES) or is not (NO) to unpin the UCB
identified in the UPL. UNPIN= is optional with a default of YES.

Environment
v Main task.
v $WAIT cannot occur.

$FREUNIT – Release a Unit Device Control Table (DCT)
Use $FREUNIT to release a device control table (DCT).

Format Description

dct
Specifies either a pointer to a DCT or the address of a DCT to be released. If
dct is written as an address, then it represents the address of a full word, which
in its three rightmost bytes contains the address of the DCT to be released. If
dct is written using register notation (either regular or special register notation),
then it represents the address of the DCT to be released. If register notation is
used, the address must be loaded into the designated register before the
execution of this macro instruction.

Notes:

1. The execution of this macro instruction may cause a $WTO macro
instruction to be executed.

2. When a device that was allocated by MVS allocation facilities goes into the
DRAINED status, the device is deallocated. To use the device, it must first
be started by the operator using the $S device command and the device
must be obtained via the $GETUNIT macro instruction. Otherwise, the
system replies device unavailable.

ÊÊ
symbol

$FREUCBS UPLADDR= parmlist-addrx
(R1) YES

,UNPIN= NO

ÊÍ

ÊÊ
symbol

$FREUNIT dct-addrx
(R1)

ÊÍ

$FREUCBS

146 z/OS V1R4.0 JES2 Macros

CAUTION:

The specified DCT must have been obtained by a $GETUNIT macro
instruction. The action of the macro instruction is unpredictable in other
cases.

Environment
v Main task.
v $WAIT can occur.

$FSILINK – Link the Functional Subsystem Interface
Use $FSILINK to provide base register setup for the major control blocks required
by the JES2 functional subsystem interface (FSI) service routines. Specify this
macro at the entry point of an FSI service routine. $FSILINK sets up registers to
point to the functional subsystem control block and functional subsystem application
control block.

Format Description

symbol
A symbol must be specified on this macro instruction.

REQUEST=
Specifies the function id of this FSI service. The function id specified is
compared to that passed in the FSI parameter list at the time of the FSI call. If
they do not match, a return code of 4 is placed in register 15 and, if specified
by the ERRET= keyword, a branch is taken to an error routine.

ERRET=
Specifies the label or a register containing the address to branch to if an invalid
function id was specified on the REQUEST= keyword.

TRACEID=
Specifies whether trace id 14 (trace GETDS, RELDS, SEND) or trace id 15
(trace GETREC, FREEREC, CHKPT) is to be used for tracing. This macro
supports these two trace ids only.

Environment
v Functional subsystem (HASPFSSM).
v MVS WAIT can occur.

$GETABLE – Get HASP/USER Table Entries
Use the $GETABLE macro to return table entries of the HASP/USER table pairs.

ÊÊ
symbol

$FSILINK REQUEST=function-name
,ERRET= addrx

(Rn)

Ê

Ê
15

,TRACEID= 14

ÊÍ

$FREUNIT

Chapter 3. JES2 Programmer Macros 147

Format Description

TABLE=
Specifies the type of table pairs to be used.
PCE Indicates the PCE table ($PCETAB).
TID Indicates the trace id table ($TIDTAB).
DCT Indicates the DCT table ($DCTTAB).
DTE Indicates the DTE table ($DTETAB).
BERT Indicates the BERT table ($BERTTAB).
WST Indicates the work selection table ($WSTAB).
SCAN Indicates the $SCAN tables ($SCANTAB).

$PAIR=
Specifies the name of the table pair to use to search for tables. This operand is
required when TABLE=WST or TABLE=SCAN.

ID=
Specifies the table entry id associated with the table entries to be returned to
the table pairs.

CURRENT indicates that the id for the current environment is to be used – that
is, PCEID (for TABLE=PCE) or TTEID (for TABLE=TID), DCTDEVID (for
TABLE=DCT), or DTESTID (for TABLE=DTE). If register notation is used, the
designated register must contain the table entry id before executing this macro.

LOOP=
Specifies a label that serves as the terminating point of the loop that is the table
entries.

If LOOP= is omitted, a single table entry lockup is performed.

ERRET=
Specifies the address of the error routine that is to receive control if the table
entry is invalid or the end of the table(s) is reached.

Notes:
1. ID= and/or LOOP= must be specified.
2. You must preserve general purpose register 0 and access register 0 before

executing $GETABLE in a loop.

Environment
v Main task and during JES2 initialization and termination.
v $WAIT cannot occur.

ÊÊ
symbol

$GETABLE TABLE= PCE
DCT
TID
DTE
BERT
WST
SCAN

$PAIR=table-pair Ê

Ê
,ID= (R0)

CURRENT
adval

,LOOP=symbol ,ERRET= relexp
(Rn)

ÊÍ

$GETABLE

148 z/OS V1R4.0 JES2 Macros

$GETADDR – Get a Control Block Address
Use the $GETADDR macro instruction to obtain the address of a specific control
block.

Format Description

CB=
Specifies the control block type (cb-type) as follows:

Common storage control blocks:
ASCB Address space control block
ASSB Address space secondary block
CADDR Common address routine table
FSSCB Functional subsystem control block
HASB HASP address space block
HAVT HASP address vector table
HCCT HASP common communications table
UCADDR User’s common address routine table (CSA)

Private storage control blocks:
ASXB Address space extension block
FSCT(JES) Functional subsystem control table
FSVT Functional subsystem vector table
HASXB HASP address space extension block
HCT HASP control table
HFCT HASP functional subsystem communication table
PADDR Private address routine table
SSIB Subsystem information block
SSICLLR Subsystem interface caller’s save area
SSOB Subsystem options block
TRE TCB recovery element
UPADDR User’s private address routine table

Note: Not all control blocks are accessible from all address spaces.
$GETADDR issues a warning message (if WARN=YES is specified) if
you request a control block that cannot be accessed.

ASID=
Specifies a half-word field, or a register that contains, the address space ID
(ASID) where the control block resides. If this ASID is different from the current
address space, you can request only common storage area-resident (CSA)
control blocks. ASID= defaults to the current ASID.

ÊÊ
symbol

$GETADDR CB=cb-type
,ASID= label

(Rn)
(R1)

,RX= (Rn)

Ê

Ê
,WORKREG= (Rn)

(R15)
NO

,POINTER= YES
,ERRET= label

(Rn)

Ê

Ê
,WARN= YES

NO

ÊÍ

$GETADDR

Chapter 3. JES2 Programmer Macros 149

RX=
Specifies the register which is to contain the requested control block address
following $GETADDR processing. Register 0 should not be used.

WORKREG=
Specifies a register (R1-R15) that $GETADDR can use for work. You can
specify a null value (WORKREG=,); however, if $GETADDR requires a work
register, you will receive assembly errors. This keyword is optional; register 15
is used if a register is needed. On return to the caller, the contents of register
15 (or the specified register) will be unpredictable. Register 0 should not be
used.

POINTER=
YES indicates that the address of a 4-byte pointer to the control block is to be
returned to the caller in the register specified by RX=.

NO will cause the address of the control block to be returned to the caller in the
register specified by RX=.

ERRET=
Specifies a label or register that contains the address of the routine that
receives control if this macro processing was unable to obtain the requested
control block address. The ERRET= specification does not apply to ASCB,
ASXB, CADDR, HASB, HASXB, HAVT, HCCT, and UCADDR control block
types. If you do not specify ERRET= and $GETADDR is unsuccessful the
register specified by RX= will contain a zero on return.

WARN=
Specifies whether (YES) or not (NO) JES2 will issue messages noting that a
particular control block cannot be accessed from the current environment.
WARN=YES is the default.

Environment
v All environments.
v $WAIT can occur.
v Callers in AR ASC mode are supported.

$GETASCB – Retrieve the Primary, Secondary, or Home ASCB
Use the $GETASCB macro instruction for a specific asid to place the primary,
secondary, or home ASCB address into a register.

Format Description

ASCBREG=
Specifies the register where the ASCB address is to be stored. Register 1 is the
default.

ÊÊ
symbol

$GETASCB
(R1)

ASCBREG= (Rn)
(R15)

,WORKREG= (Rn)

Ê

Ê
PRIMARY

,TYPE= SECONDARY
HOME

,ASID= addrx
(Rn)

ÊÍ

$GETADDR

150 z/OS V1R4.0 JES2 Macros

WORKREG=
Specifies a work register that can be used in processing your request. Register
15 is the default.

TYPE=
Specifies the type of ASCB that is to be located.

PRIMARY (the default)
indicates the primary address space’s ASCB.

SECONDARY
indicates the secondary address space’s ASCB.

HOME
indicates the home address space’s ASCB.

ASID=
Specifies the address of the storage location containing the ASID for the
address space whose ASCB address is to be returned or specifies the register
containing the ASID.

Note: The TYPE= operand is ignored if ASID= is specified.

Environment
v Main task, subtask, or user address space.
v $WAIT cannot occur.

$GETBLK – Get a Storage Cell from a Free Cell Pool
Use $GETBLK to obtain a specified number of predefined storage cells from one of
several free cell pools.

Format Description

TYPE=
Specifies the type of storage cell that is to be obtained and from which cell pool
the cell is to be obtained. The following storage cell types may be coded:

Cell Type Meaning
SAVE An MVS-type save area
JIB A JOE information block
BUF An I/O buffer of 4K bytes
RPL A request parameter list control block chain
GTRC A GETREC chain control block
SSOB A subsystem options block

NUM=
Specifies the number of storage cells that are to be obtained. Specify this
number (nnn) as a valid number not greater than that specified on the
$QCTGEN macro LIMIT= keyword or place the number in a register (Rn). If

ÊÊ
symbol

$GETBLK
BUF

TYPE= SAVE
JIB
RPL
GTRC
SSOB

1
,NUM= (R0)

nnn

ÊÍ

$GETASCB

Chapter 3. JES2 Programmer Macros 151

STACK=YES was coded on the $GETQC macro, the cells specified by this
macro are chained in a stack. If NUM= is specified as greater than 1, the blocks
will be chained using the chain field specified in the QCT for that storage type.

Environment
v Functional subsystem (HASPFSSM).
v MVS WAIT can occur.

$GETBUF – Acquire a Buffer from a JES2 Buffer Pool
Use $GETBUF in the JES2 main task, user, or FSS environments to obtain a buffer
from a buffer pool and return the address of this buffer in register 1.

Format Description

none
Specifies a location to which control is returned if no buffers are available. (If
WAIT=YES is specified, this operand is ignored.)

If this operand is omitted, the condition code is set to reflect the availability of a
buffer as follows:

CC=0
No buffer is available.

CC≠0
R1 contains the address of the buffer.

Note: This is only valid in the main task environment.

NUM=
Specifies the number of buffers or a register containing the number of buffers to
be obtained. (This keyword is ignored if this macro instruction is issued from the
user or subtask environment.) One buffer is the default.

ÊÊ
symbol

$GETBUF
non-relexp 1

,NUM= (R0)
n

Ê

Ê
HASP

,TYPE= BSC
VTAM
PAGE
PP
PROT
UNPROT
SPXFR
CB
HOLD
EXTHASP

ANY
,LOC= BELOW

SAVE
,REGS= USE

Ê

Ê
NO

,FIX= YES
NO

WAIT= YES
,ERRET= label

(Rn)

ÊÍ

$GETBLK

152 z/OS V1R4.0 JES2 Macros

TYPE=
Specifies the type of buffer to be obtained, and whether the buffer is to contain
an IOB or an RPL, by type code as follows:

HASP (default for main task)
A local buffer where an input/output buffer (IOB) is to be constructed.

Note: This is only valid in the main task environment.

BSC
A teleprocessing (TP) buffer where an IOB is to be constructed.

Note: This is only valid in the main task environment.

VTAM
A TP buffer where a request parameter list (RPL) is to be constructed.

Note: This is only valid in the main task environment.

PAGE
A local 4096-byte buffer where an IOB is to be constructed.

Note: This is only valid in the main task environment.

PP
A local print/punch buffer where an IOB is to be constructed.

Note: This is only valid in the main task environment.

PROT
A protected buffer where an IOB is to be constructed.

Note: This is only valid in the user and subtask environments.

UNPROT
An unprotected buffer where an IOB is to be constructed.

Note: This is only valid in the user and subtask environments.

SPXFR
A local spool offload buffer.

Notes:

1. This is only valid in the main task environment.

2. You must specify WAIT=YES if TYPE=SPXFR is specified.

CB (default for user and subtask environments
A control block buffer is to be constructed.

HOLD
An unprotected buffer used for GET/UPDATE.

Note: This is only valid in the user environment.

EXTHASP
A HASP data buffer is to be constructed with the storage above the 16
megabyte line.

LOC=
Specifies whether the buffer that is obtained can be above (ANY) or must be
below (BELOW) 16 megabytes in virtual storage. LOC is valid only if TYPE=
specifies PROT, UNPROT, HOLD, or CB. LOC=ANY is the default.

$GETBUF

Chapter 3. JES2 Programmer Macros 153

REGS=
Specifies whether (SAVE) or not (USE) to save the contents of the caller’s
registers. REGS= is valid only in the user or subtask environments.
REGS=SAVE is the default.

FIX=
Specifies whether the buffer is to be page-fixed (YES); if FIX=NO is specified or
this parameter is omitted, the page containing the buffer is not fixed.

Note: This is only valid in the main task environment.

WAIT=
Specifies whether the $GETBUF service routine is to cause the routine issuing
the macro to wait ($WAIT BUF) until buffers are available (WAIT=YES), or
whether control is to be returned immediately (WAIT=NO or parameter omitted)
if buffers are not available. If TYPE=SPXR is specified, you must also specify
WAIT=YES.

Note: This is only valid in the main task environment.

ERRET=
Specifies the label or a register (R2-R12) that contains the address of the
routine that receives control if $GETBUF does not successfully obtain the
requested storage cell(s).

Note: TYPE=, REGS=, LOC=, and ERRET= are the only keywords applicable in
the user environment.

CAUTION:

The JES2 buffer that is obtained by using the $GETBUF macro contains a
prefix area that must not be altered. This prefix area is used by the
$FREEBUF macro; unpredictable results may occur if the prefix area is
altered.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Buffer obtained
4 Buffer not obtained

Environment
v JES2 main task, subtask, or user environment.
v $WAIT can occur if you specify WAIT=YES on the macro.

$GETCEL – Acquire an Extended Common Storage (ECSA) Area Cell
Installation-written exit routines can use $GETCEL to obtain storage area cell pools
in ECSA for use in communicating between the JES2 main task and the user
environment when user job and task ownership is required. To free a cell, use the
$FRECEL macro.

$GETBUF

154 z/OS V1R4.0 JES2 Macros

Format Description

KEY1=
Specifies the label of, or a register that contains, a value used as the key value
identifier for this storage cell. Only cells with the value specified for KEY1= will
be freed unless KEY2= is specified, in which case storage cells that match both
key values will be freed. This value can be used by the $FRECEL macro when
the storage cell is freed.

If register notation is used, the designated register must be loaded with the
KEY1 value. This keyword is required.

KEY2=
Specifies the label of, or a register that contains, a value used as the secondary
key value identifier. This keyword is used to further identify the owner of the
cell. Only storage cells that match both the value specified in KEY1= and
KEY2= will be freed.

SIZE=
Specifies the storage size in bytes of the cell. The value specified must be
between 1 and 65280, inclusive. If register notation is used, the designated
register must be loaded with the value before execution of this macro
instruction.

Note: If register notation is used, register 2 will be changed by the macro
expansion.

ERRET=
Specifies the label or a register that contains the address of a routine that is to
receive control if $GETCEL is unable to obtain the requested storage cell. If
ERRET= is specified and an error occurs, R15 will contain a return code of 4
on return to the caller.

OKRET=
Specifies the label or a register that contains the address of a routine that is to
receive control if JES2 can obtain the requested CSA storage cell.

Notes:

1. On obtaining a storage cell, the first word of the storage block contains the
address of the controlling cell control element (CCE). This word must be left
within the storage area in order for the $FRECEL macro instruction to free the
storage.

2. If SIZE= register notation is used, register 2 is changed.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 storage cell obtained
4 storage cell not obtained

ÊÊ
symbol

$GETCEL KEY1= label
(R0) ,KEY2= label

(R1)

Ê

Ê ,SIZE= value
(R15) ,ERRET= label

(Rn)
,OKRET= label

(Rn)

ÊÍ

$GETCEL

Chapter 3. JES2 Programmer Macros 155

Environment
v All environments.
v $WAIT cannot occur.

$GETCMB – Get Console Message Buffers
Use $GETCMB to obtain one or more console message buffers from the free queue
and return the address of the first buffer in register 1.

Format Description

NUMCMB=
Specifies the number of console message buffers required. If register notation is
used, the number of required console messages must be loaded into the
designated register (R1 - R12) before the execution of this macro.

If this operand is omitted, NUMCMB=1 is assumed.

WAIT=
Specifies the action to be taken in the event insufficient console message
buffers (CMBs) are available to satisfy the request. This parameter must be
coded.

YES
$GETCMB is to return control only after the request is satisfied. Register 15
contains a return code. If you code YES, do not code either ERRET= or
OKRET=.

NO
If the request cannot be satisfied, $GETCMB is to return control
immediately. Register 15 contains a return code. If you code WAIT=NO, you
must also code ERRET=, or OKRET=, or both.

ERRET=
Specifies the address of a routine that is to receive control if the
request is unsuccessful. You can specify an RX-address or a register
(R2-R12) that contains the address. There is no default.

OKRET=
Specifies the address of a routine that is to receive control if the
request is successful. You can specify an RX-address or a register
(R2-R12) that contains the address. There is no default.

ÊÊ
symbol

$GETCMB
1

NUMCMB= value
(Rn)

Ê

Ê ,WAIT= YES
NO ,ERRET= RX-addr

(Rn) ,OKRET= RX-addr
(Rn)

,OKRET= RX-addr
(Rn) ,ERRET= RX-addr

(Rn)
,DEMANDCMB=YES

ÊÍ

$GETCEL

156 z/OS V1R4.0 JES2 Macros

DEMANDCMB=YES
Specifies that a console message buffer (CMB) is needed but the
processor cannot wait. If you code this parameter, you must not code
ERRET= or OKRET=.

Return Codes
The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 The request was satisfied and register 1 points to the first CMB. If

there are multiple CMBs, field CMBCMB is used to chain the
CMBs. In the last CMB on the chain, CMBCMB contains zero.

4 The request could not be satisfied. Register 1 contains 0.

Register Contents When $GETCMB Returns Control
Register Contents
0 Unpredictable
1 Address of the CMB chain or 0.
2-13 Unchanged
14 Unpredictable
15 Return code.

Environment
v Main task.
v $WAIT can occur (if you specify WAIT=YES on the macro).

Notes:

1. If you obtain CMBs and then $WAIT (either directly or indirectly) on a resource
owned by another processor (PCE) that issues a $WTO, you might encounter a
CMB lockout problem.

2. Do not use $FRECMB to free a CMB that has been processed by a $WTO that
specified CMB=YES because the $WTO has already freed the CMB.

$GETHP – Get High Private Cell Pool
Use $GETHP to manage storage cells residing in high private storage. This macro
instruction provides the same functions as do GETMAIN and FREEMAIN; however,
$GETHP is recommended to increase performance.

Format Description

ÊÊ
symbol

$GETHP
GET

TYPE= FREE
(R1)

,CELL= label
(Rn)

Ê

Ê
0

,VERSIZE= cell-length

ÊÍ

$GETCMB

Chapter 3. JES2 Programmer Macros 157

TYPE=
Specifies whether the storage cell is to be obtained (GET) or freed (FREE). The
default is TYPE=GET.

CELL=
If TYPE=FREE, then CELL= specifies either the label of a field or a register that
contains the address of the storage cell to be freed. If TYPE=GET, then CELL=
specifies the register where the address of the storage cell is returned. If
CELL= is not specified, register 1 is used.

VERSIZE=
Specifies the length of the requested storage cell. An assembler error occurs if
the requested cell length exceeds the length of the cell that can be obtained.
The maximum cell length is TRELEN (TCB recovery element length) – 4.
TRELEN is defined in the $TRE macro.

The default is 0.

Environment
v All environments.
v $WAIT can occur.
v Callers in AR ASC mode are supported.

Programming Requirements
Be certain to include $TRE on the $MODULE macro call.

$GETLOK – Acquire the MVS CMS, LOCAL, or JES2 Job Lock
Use $GETLOK to acquire the MVS CMS, LOCAL, or JES2 job lock depending on
the type of lock requested and the environment from which it is requested.

Use $GETLOK to obtain the cross-memory services (CMS) lock to serialize the
JES2 main task with routines that are executing for tasks in other address spaces.
The CMS lock is required when modifying certain operating system control blocks
and in some cases when interfacing with JES2 code that is running in support of
the subsystem interface and access method interface in other address spaces. After
obtaining the CMS lock, the user should not execute any code that allows the
execution of any SVC instructions until after first freeing the lock via $FRELOK
macro instruction.

Obtaining the local lock (LOCAL) serializes the use of resources such as queues
and control blocks among several tasks running within the same address space.
The functional subsystem interface (FSI) service routines running in the functional
subsystem address space require the local lock for serialization of queues, buffer
pools, and control blocks so many separate functional subsystem application (FSA)
tasks can use these resources.

Obtaining the JES2 job lock (JOB) prevents job queue elements (JQEs) from being
changed by any code except the issuer of the job lock.

Note: The reason for executing the $GETLOK macro instruction should be fully
documented in your code.

$GETHP

158 z/OS V1R4.0 JES2 Macros

Format Description

TYPE=
Specifies the lock to be obtained. Modules assembled for the JES2 environment
can specify CMS or JOB only. Modules assembled for the FSS environment
can specify CMS or LOCAL only.

CMS (default)
The cross-memory lock is to be obtained. All other operands are ignored.

LOCAL
The MVS local lock is to be obtained. All other operands are ignored.

JOB
The JES2 job lock is to be obtained. In this case a job queue element
address (JQE=) must be specified.

JQE=
Specifies the address of a fullword containing the address of the specified JQE
in its three right-most bytes. JQE= must be specified for TYPE=JOB.

WAIT=
Specifies whether to $WAIT for the JOB lock to be obtained. This keyword only
applies to a TYPE=JOB request; otherwise, it is ignored. WAIT=YES is the
default.

On return from the $GETLOK routine, register 15 will contain a return code as
follows:

Return Code Meaning
0 Lock obtained
4 Wait required
8 JQE was freed while waiting for the lock.

Environment
v Main task and functional subsystem (HASPFSSM).
v $WAIT can occur (if you specify WAIT=YES on the macro).

$GETMAIN – Branch-Entry GETMAIN Services
Use $GETMAIN in the JES2 main task, user, or subtask environments to obtain an
area of storage from MVS GETMAIN/FREEMAIN services or to free an area of
storage obtained by this method.

ÊÊ
symbol

$GETLOK
CMS

TYPE= LOCAL
(JOB,JQE=relexp)

YES
WAIT= NO

ÊÍ

$GETLOK

Chapter 3. JES2 Programmer Macros 159

Format Description

type-code
Identifies the type of GETMAIN/FREEMAIN request. The types of requests are
defined as follows:

Type Meaning

R An unconditional GETMAIN or FREEMAIN request.

C A conditional GETMAIN request that returns a condition code in register
15. (CC=0 indicates a valid GETMAIN, CC]0 indicates otherwise.)

RC A conditional GETMAIN request that returns a condition code in register
15. (CC=0 indicates a valid GETMAIN, CC]0 indicates otherwise.)

U An unconditional FREEMAIN request. If type-code is not specified on
this macro instruction, this is the default.

RU An unconditional FREEMAIN request. In the user’s environment, this is
the default.

BC A conditional GETMAIN request for a buffer that returns a condition
code in register 15. (CC=0 indicates a valid GETMAIN, CC]0 indicates
otherwise.) BC can be used only in the user’s environment.

BU An unconditional FREEMAIN request for a buffer. BU can be used
only in the user’s environment.

LV=
Specifies the length of the area to be obtained or freed. This value is loaded
into register 0. When this value is coded by way of register format, the subpool
may be specified in the high order byte of the register.

ÊÊ
symbol

$GETMAIN
type-code ,LV= value

(R0)
,A= addrx

(R1)

Ê

Ê
0

,SP= absexp
,BNDRY= PAGE

DBLWD
31

LOC= 24
(24, 31)
(31, 64)
(24, 64)

Ê

Ê
1

,KEY= TCB
PSW

NO
,TCB= YES

JOBSTEP
HIGH

HOME
OWNER= PRIMARY

SECONDARY
SYSTEM

Ê

Ê
SAVE

,REGS= USE
ZEROSTOR= NO

YES
OKRET= RX-

addrx
(RN)

Ê

Ê
ERRET= RX-

addrx
(RN)

ÊÍ

$GETMAIN

160 z/OS V1R4.0 JES2 Macros

A=
Specifies the address of the storage area to be freed. This keyword is only valid
if FREMAIN=YES is also specified.

SP=
Identifies the subpool number. Subpool zero is the default if no subpool is
specified or the subpool is not specified in the high order byte of the LV=
parameter. This parameter must be specified if you want to free an entire
subpool. (In that case, do not code the A= parameter.)

BNDRY=
Specifies that the storage requested be located on either a page or doubleword
boundary. This keyword is ignored if the type-code you specify indicates a
FREEMAIN request.

PAGE
Indicates that the storage be located on a 4096-byte (page) boundary.

DBLWD
Indicates that the storage be located on a doubleword boundary.

KEY= (applies only to the user environment when requesting USER/CALLER
key storage)

Specifies the key of the storage that is either to be acquired or freed. If the
keyword is omitted, KEY=1 is used.

TCB indicates to use the TCBPFK key of the current TCB.

PSW indicates to use the current PSW storage key.

TCB= (applies only to the user environment)
Specifies what TCB to associate with the storage to be obtained.

YES – indicates the current TCB.

NO (the default) – indicates a high TCB in the address space if USER key
storage is requested. Otherwise, the current or jobstep TCB is used.

JOBSTEP – indicates the jobstep TCB.

HIGH – indicates a high TCB in the address space.

OWNER=
For CSA subpools, this indicates who is to be assigned as owner of this
storage. This is for CSA tracking purposes only and does not affect when the
storage is freed. Valid specifications:

HOME
Associate storage with the home address space. This is the default.

PRIMARY
Associate storage with the primary address space.

SECONDARY
Associate storage with the secondary address space.

SYSTEM
This storage should not be associated with any address space.

LOC= (applies only to the JES2 main task environment)
Specifies the location of the virtual storage to be allocated.

24 Indicates that the storage is to be located below the 16-megabyte line.

31 Indicates that the storage can be either located above or below the

$GETMAIN

Chapter 3. JES2 Programmer Macros 161

16-megabyte line in 31 bit storage. This is the default for storage requests
in subpools 0-127 in the JES2 main task environment.

(24, 31)
Indicates virtual storage is to be located below the 16 megabyte line but the
real storage that backs it can be above the 16 megabyte line (in 31 bit
storage).

REGS=
Specifies whether (SAVE) or not (USE) to save the contents of the caller’s
register. REGS= is valid only in the user’s environment. REGS=SAVE is the
default.

ZEROSTOR=
ZEROSTOR=YES ensures storage obtained is set to zero.

OKRET=
Specifies the address of a routine that is to receive control if the request is
successful. You can specify an RX-address or a register (R2-R12) that contains
the address. There is no default.

ERRET=
Specifies the address of a routine that is to receive control if the request is
unsuccessful. You can specify an RX-address or a register (R2-R12) that
contains the address. There is no default.

Environment
v Main task, user address space, or subtask.
v $WAIT can occur for the main task environment.
v $WAIT cannot occur for the user or subtask environment.

$GETQC – Call the Quick Cell Get Routine
Use $GETQC to obtain storage cells from a previously-built quick cell pool. This
macro instruction assists the efficient management of the work areas and buffer
storage requirements for the JES2 functional subsystem support routines
(HASPFSSM). The dynamic quick cell feature provides a high-performance method
for allocation and deallocation of fixed-length cells of storage. These quick cells
(that is, quickly obtainable blocks of storage) are defined, created, and controlled in
the quick cell control table (QCT) for use by the functional subsystem support
routines (HASPFSSM). Cell types include save areas, I/O buffers, and JOE
information blocks (JIBs).

Format Description

TYPE=
Specifies the type as defined in the $QCTGEN macro for the quick cell to be
obtained.

ÊÊ
symbol

$GETTQC TYPE= type-code
(R0) 1

,NUM= nnn
(Rn)

Ê

Ê
NO

,STACK= YES

ÊÍ

$GETMAIN

162 z/OS V1R4.0 JES2 Macros

type-code
Specifies that the type-code and all equated symbols for each type-code
are defined in the $QCTGEN macro.

(R0)
Specifies that the register contains the quick cell type-code as defined in
the $QCTGEN macro, the two low-order bytes must contain the type-code
and the two high-order bytes must be zeroed.

Note: The TYPE= keyword must be specified.

NUM=
Specifies the number of quick cells to get from the quick cell pool. The value
assigned to NUM= must not exceed the specification of QCTLIMIT; exceeding
this value will cause an error condition.

nnn
Specifies the number (1-255) of quick cells. The default value is 1.

(Rn)
Specifies that register notation is used. The register specified contains the
number of quick cells.

STACK=
Specifies whether the quick cells should be pushed onto a stack or chained
together. The chaining field offset is specified in the QCT.

YES
Specifies that the quick cells specified by this macro are pushed onto a
stack identified by the QCT.

NO
Specifies that the quick cells specified by this macro are chained together
and the address of the head of the chain is passed back to the caller.

Note: Register 11 must contain the address of the HASP function control table
(HFCT) before executing $GETQC.

Environment
v Functional subsystem (HASPFSSM).
v MVS WAIT can occur.

$GETRTN – Get the Address of a Routine
$GETRTN obtains the address of a requested routine. $GETRTN searches the
various assembly environments’ routine tables to find the requested routine before
returning the address of a local routine. The macro resolves any linkage
requirements needed by the routine in a specific environment. Use $GETRTN to
obtain a routine address to pass, through a $SQD, to a general purpose subtask.

$GETQC

Chapter 3. JES2 Programmer Macros 163

Format Description

arg-addr
Use ‘arg-addr’ to specify one of the following arguments (JES2 checks for
defined symbols and processes these arguments in the order listed):

1. A register containing the address of the requested routine.

2. The name (label) of a routine listed in one of the following tables:

Table Address Prefix
CADDR C@
PADDR P@
UCADDR UC@
UPADDR UP@

JES2 will search through the tables in the above order.

Notes:

a. The UPADDR is chained out of $UPADDR in the $HCT.

b. The UCADDR is chained out of the CCTUCADD in the $HCCT.

3.

v A name (label) of a local routine this macro will call; this causes
$GETRTN to generate an ADCON.

v A label of a field containing the address of a routine this macro will call.

4. The name of a routine contained in another module; this causes $GETRTN
to generate a VCON.

RTNREG=Rn
$GETRTN places the address of the requested routine into this register.

CTBLREG=Rn
$GETRTN uses this register as a base to index into the $CADDR, $PADDR,
$UCADDR, and $UPADDR during the routine address search. Because
$GETRTN over-writes the contents of this register during the address search,
do not specify a register that your module needs after invoking the routine. You
can use the same register for CTBLREG= as specified in RTNREG=.

ANVSET=YES|NO
ANVSET specifies whether the assembly environment should be changed to
match the environment of the routine address table in which the routine name
was found.

If you change the assembly environment, make sure the calling routine can
execute in the new environment.

Default: NO.

Environment
v All environments.
v MVS and $WAIT will not occur.

ÊÊ
symbol

$GETRTN arg-addr ,RTNREG=Rn ,CTBLREG=Rn Ê

Ê
NO

,ANVSET= YES

ÊÍ

$GETRTN

164 z/OS V1R4.0 JES2 Macros

$GETSMFB – Acquire a JES2 SMF Buffer from the JES2 SMF Buffer
Pool

Use $GETSMFB to obtain a buffer from the JES2 SMF buffer pool, clear the buffer
contents to binary zeroes, and return the address of this buffer in register 1. The
macro returns condition code 0 and a 0 in register 1 if no buffers were available
and WAIT=NO was specified in the macro.

Format Description

SIZE=
Specifies the size of the SMF buffer to be obtained.

STANDARD
Indicates that the 920-byte standard size buffer be obtained. This is the
default for the SIZE= parameter.

LARGE
Indicates that a 32K-byte SMF buffer be obtained.

WAIT=
Specifies the action to be taken if no JES2 SMF buffers are available as
follows:

YES
Control is not returned to the caller until a JES2 SMF buffer has become
available.

NO
An immediate return is made. If no buffers are available, register 1 contains
a 0 on return to the calling routine. The condition code is nonzero if a buffer
is available or 0 if no buffers are available.

Environment
v JES2 Main task.
v $WAIT can occur (if you specify WAIT=YES on the macro).

$GETUCBS – Obtain a UCB Address
Use $GETUCBS to obtain a single UCB address or a series of device class UCB
addresses, one at a time. JES2 returns the UCB address in the UPLUCB field of
the UCB services parameter list(UPL). Register 1 points to the UPL.

Format Description

ÊÊ
symbol

$GETSMFB
STANDARD

,SIZE= LARGE
NO

WAIT= YES

ÊÍ

ÊÊ
symbol

$GETUCBS CLASS= (R0)
(Rn)

UNIT= addrx
(Rn)

NO
,CONT= YES

ÊÍ

$GETSMFB

Chapter 3. JES2 Programmer Macros 165

CLASS=
Specifies the device class of the UCB or UCBs that are requested.

UNIT=
specifies the address of a 4 byte field that contains the EBCDIC unit address of
the device corresponding to the requested UCB. The 4 byte field must be on a
full word boundary. The variable addrx can be either the address of the 4 byte
field or a register (registers 2-12, specified in parenthesis) that contains the
address of the 4 byte field.

CONT=YES | NO
Indicates whether the UCB to be located is (YES) or is not (NO) the UCB for
the next device in a series of devices. CONT=NO is the default. Register 1
must be preserved in the loop when CONT=YES.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing was successful. Register 1 points to the UPL and the

UPLUCB field contains the UCB address.
4 No UCB was found.

v If you specified UNIT=, you provided a device number for which
there is no UCB.

v If you specified CLASS=, there are no more UCBs for the
specified device class.

Programming Considerations
v You must code either CLASS= or UNIT= but not both.

v To obtain one UCB when you know the EBCDIC unit address:

– Issue $GETUCBS with UNIT= specified and CONT= omitted or coded as
CONT=NO.

– If $GETUCBS returns a return code of 0, after you finish with the UCB issue
$FREUCBS with UNPIN=YES.

– If $GETUCBS returns a return code of non-zero, issue $FREUCBS with
UNPIN=YES.

v To obtain a series of UCBs, one at a time:

1. Issue $GETUCBS with CONT=NO and the CLASS= parameter specified.

2. If $GETUCBS returns a non-zero return code, go to step 8 on page 167.
Otherwise, go to the next step.

3. If you finish processing the UCB and that is the last UCB you want, issue
$FREUCBS with UNPIN=YES and then go to step 9 on page 167. Otherwise,
continue with the next step.

4. Adjust the UCB address in UPLDEVN as follows:
– Obtain the device number from the UCBCHAN field of the UCB.
– Add 1 to the device number and store the result into UPLDEVN in the

UPL.

5. Issue the MVS macro UCBPIN with the UNPIN parameter.

6. Issue $GETUCBS with CONT=YES and the CLASS= parameter specified to
obtain the next UCB in the series. JES overlays the UPL with information
about the newly obtained UCB.

7. If $GETUCBS returns a return code of 0, return to step 3. Otherwise
continue.

$GETUCBS

166 z/OS V1R4.0 JES2 Macros

8. Issue $FREUCBS with UNPIN=NO.

9. Continue with your program.

Environment
v Main task or during JES2 initialization and termination.
v $WAIT cannot occur.

$GETUNIT – Acquire a Unit Device Control Table (DCT)
Use $GETUNIT to assign a device control table (DCT) to a specific device.

Format Description

dct
Specifies either a pointer to a DCT or the address of a DCT to be obtained. If
dct is written as an address, then it represents the address of a full word
containing the address of the DCT to be obtained. If dct is written using register
notation (either regular or special register notation), then it represents the
address of the DCT to be obtained. If register notation is used, the address
must be loaded into the designated register before the execution of the macro
instruction. DCT address must be specified.

not-avail
Specifies a location to which control is returned if the specified DCT is not
available. If this operand is omitted, the condition code is set to reflect the
availability of a DCT as follows:

CC=0
The DCT is not available.

CC≠0
R1 contains the address of the available DCT.

Environment
v Main task.
v $WAIT cannot occur.

$GETWORK – Obtain a Work Area
Use $GETWORK to obtain a work area in subpool 1 in the JES2 address space. If
the size of the requested area is appropriate, storage is allocated from
JES2-maintained storage pools.

ÊÊ
symbol

$GETUNIT dct-addrx
(R1) ,not-avail-relexp

ÊÍ

$GETUCBS

Chapter 3. JES2 Programmer Macros 167

Format Description

WORDS=
Specifies the size of the work area in full words or a register that contains the
size of the work area in full words.

USE=
Specifies the 4-character identifier to be placed in the first four bytes of the
work area.

JES2 obtains and clears the storage and then places the identifier into the first
four bytes of the work area. Register 1 contains the address of the first byte of
the storage area.

JES2 issues catastrophic error $GW1 if the size requested on the WORDS=
operand is greater than the largest size work area supported.

ERRET=
Specifies the label or register (R2-R12) that indicates where to branch if
$GETWORK cannot successfully allocate required storage. If ERRET= is not
specified or if the allocate fails for any reason, $GETWORK issues the
catastrophic ABEND, GW1. If ERRET is specified, $GETWORK issues a
catastrophic abend for internal errors only, for other errors, (e.g., a GETMAIN
failure) register 15 returns a return code of 4. This keyword is not valid if
WAIT=YES is also specified.

WAIT
Specifies whether (YES) or not (NO) the $GETWORK service routine is
permitted to $WAIT for storage. This keyword is not valid if ERRET= is also
specified.

LOC=
Specifies the location of the virtual and central storage to be allocated.

BELOW
Indicates that the storage is to be allocated below the 16-megabyte line.

ANY
Indicates that the storage can either be located above or below the
16-megabyte line.

OKRET=
Indicates the label or a register (R2-R12) that contains the address of a routine
that is to receive control if JES2 can obtain the requested CSA storage cell.

CAUTION:
OKRET= is mutually exclusive with WAIT=YES.

ÊÊ
symbol

$GETWORK WORDS= number
(Rn)

,USE=code
,ERRET= label

(Rn)
NO

,WAIT= YES

Ê

Ê
ANY

,LOC= BELOW
,OKRET= label

(Rn)
NO

,READONLY= YES

ÊÍ

$GETWORK

168 z/OS V1R4.0 JES2 Macros

READONLY=
Indicates whether the memory obtained is readonly (YES) (that is, not key 1) or
read/write (NO).

Environment
v Main task.
v $WAIT can occur if WAIT=YES is specified.

$IOERROR – Log Input/Output Error
Use $IOERROR to log an input/output error on the operator’s console.

Format Description

buffer
Specifies either a pointer to a JES2 buffer or the address of the buffer that has
been associated with a JES2 input/output error.

If buffer is written as an address, it represents the address of a fullword that
contains the address of the buffer in error in its 3 rightmost bytes. If buffer is
written using register notation (either regular or special register notation), it
represents the address of the buffer in error. If register 1 is used, the address
must be loaded into the register before the execution of the macro instruction.

Environment
v Main task.
v $WAIT can occur.

$IOTBLD – Build an Input/Output Table (IOT)
Use $IOTBLD to build PDDB-only (peripheral data definition block) IOTs, secondary
allocation IOTs, and SPIN IOTs.

Format Description

PRIMIOT=
Specifies a label or register that contains the address of the primary allocation
IOT.

MTTR=
Specifies the MTTR of the new secondary allocation IOT. This parameter is
valid and required only if TYPE=SECOND is specified.

ÊÊ
symbol

$IOERROR buffer-addrx
(R1)

ÊÍ

ÊÊ
symbol

$IOTBLD PRIMIOT= label
(Rn)

,MTTR= label
(Rn)

Ê

Ê
PDDB

,TYPE= SECOND
SPIN ,SECIOT= label

(Rn)
,ERRET= label

(Rn)

ÊÍ

$GETWORK

Chapter 3. JES2 Programmer Macros 169

Note: Registers 0 and 1 can not be used if this parameter is coded.

TYPE=
Specifies the type of IOT to be built and chained into the storage and IOT
chains.

PDDB
Indicates a PDDB-only IOT

SECOND
Indicates a secondary allocation IOT

SPIN
Indicates a SPIN IOT

SECIOT=
Specifies a label or register that contains the address of the buffer into which
the secondary IOT is moved. If you specify TYPE=SECOND and do not supply
this specification, or the register (or area pointed to) contains zeros, $IOTBLD
still obtains and initializes a buffer as a secondary allocation IOT.

Notes:

1. This parameter is valid only if TYPE=SECOND is coded.

2. Registers 0 and 2 must not be coded.

ERRET=
Specifies a label or register that contains the address of the routine that
receives control if register 15 contains a nonzero return code.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 IOT build successful
4 GETMAIN for the IOT buffer failed

Environment
v User environment.
v MVS WAIT can occur.

$JBIDBLD – Build A JES2 Job ID from a Binary Job Number
Use $JBIDBLD to convert a binary job number to an 8-character JES2 job identifier.

Format Description

ÊÊ
symbol

$JBIDBLD Ê

Ê JOBID= label
(Rn) JQE= label

(Rn)
,JOBNUM= label ,JOBTYPE= label

(Rn) (Rn)
JNUMREG= (Rn) ,JOBTYPE= label

(Rn)

ÊÍ

$IOTBLD

170 z/OS V1R4.0 JES2 Macros

JOBID=
Specifies a label or a register that contains the address of an 8-byte area where
$JBIDBLD will build the job ID.

JOBNUM=
Specifies a label or a register that contains the address of a halfword field
which contains the binary job number to be converted to a job ID.

JOBTYPE=
Specifies a label, or a register that contains the address, of the job type flag
byte (JOB, STC, TSU) used to construct the job ID. The job type flag byte must
be defined. Valid job types, and the bit settings for each are:

job type flag bit setting
batch job xxxxxx00
STC xxxxxx01
TSU xxxxxx10

JNUMREG=
A register containing the binary job number that is mutually exclusive with
JOBNUM.

JQE=
The address of the JQE to be used for data that is mutually exclusive with
JNUMREG, JOBNUM and JOBTYPE. The values of the source job number and
the jobtype field are derived using the given JQE/JQA address.

Environment
v All environments.
v MVS WAIT and $WAIT cannot occur.

$JCAN – Cancel Job
Use $JCAN to prepare the job represented by the specified job queue element for
cancellation of its normal execution and output, or cancellation on completion of its
current activity.

Format Description

JQE=
Specifies the address of the job queue element that represents the job to be

ÊÊ
symbol

$JCAN
(R1)

JQE= addrx
YES

,ENTER= NO

Ê

Ê
,TYPE= CANXEQ

CANALL
STOP

NO
,DUMP= YES

NO
,ARMREST= YES

Ê

Ê
CANCEL

,ACTION= TEST
,NOTJOB=relexp ,NOP=relexp ,OK=relexp

Ê

Ê
,NOJQE=relexp ,OFFLINE=relexp ,PROTECT=relexp

ÊÍ

$JBIDBLD

Chapter 3. JES2 Programmer Macros 171

cancelled. If register notation is used, the address must be loaded into the
designated register before the execution of this macro instruction unless
ENTER=NO is specified.

ENTER=
Specifies whether actual entry to the job cancel service routine is to be affected.
If this operand is omitted or YES is specified, the routine is entered. If the
specification is NO, the execution of this macro instruction is for setting
parameter values in register 0 based on the specifications in the TYPE and
DUMP operands. Operands other than ENTER, TYPE, and DUMP should be
omitted when ENTER=NO is specified, and the value of register 0 must not be
altered until after a later $JCAN macro with ENTER=YES specified or omitted.

TYPE=
Specifies the action to be taken.

CANXEQ
Specifies that a normal batch job, which is in the system queues before
execution or in execution, is queued for output. A request for a job in
$OUTPUT is considered a no operation, and control is given to the location
specified by the NOP operand. If the job is a started task control (STC) or
time-sharing user (TSU) job before being executed or in execution, the
request is rejected, and control is given to the location specified by the
NOTJOB operand.

CANALL
The job is cancelled from its current activity and queued for purge. If the job
is an STC or TSU job before or in execution, the request is rejected, and
control is given to the location specified by the NOTJOB operand.

STOP
The action is the same as for CANALL except that the job’s current activity
is not deleted.

If TYPE= specifies a value other than CANXEQ, CANALL, or STOP, the
specified value is placed in register 0 (when ENTER=NO), or passed to the
service routine in register 0 (when ENTER=YES). If this operand is omitted,
register 0 must have been set by a previous execution of a $JCAN macro
instruction specifying ENTER=NO.

Notes:
1. If the job queue element is currently owned by a processor, queuing to

$OUTPUT or $PURGE is delayed until the next $QMOD, $QPUT, or
$QADD macro instruction is performed.

2. The CANXEQ function may be negated by the execution processor if a
reenqueue function is requested.

3. The CANXEQ function results in cancellation of output if a previous request
has been made using the STOP function request.

DUMP=
Specifies whether the system is to attempt a storage dump of the specified job
whose execution is being canceled. If the specification is DUMP=YES and
TYPE=CANXEQ or TYPE=CANALL is specified, and if the job is in execution
and is not an STC or TSU job, the system attempts to dump the job in a
manner compatible with the MVS CANCEL jobname, DUMP command.

ARMREST=
Specifies whether the automatic restart manager is to restart the job after it is
canceled, if that job is registered with the automatic restart manager.
ARMREST=YES is valid only if TYPE=CANXEQ is also specified.

$JCAN

172 z/OS V1R4.0 JES2 Macros

This parameter is ignored if the job was not in the execution phase of
processing or was not registered with the automatic restart manager.

ACTION=
ACTION=CANCEL (the default) indicates the job should be cancelled, if it is
cancellable. ACTION=TEST indicates that the job is to be tested for whether it
would be cancellable, and an appropriate return code returned. However, no
cancel is attempted.

NOTJOB=
Specifies the location to be given control if the job to be cancelled is a STC or
TSU job in the system before or in execution.

NOP=
Specifies the location to be given control if TYPE=CANXEQ is specified and the
job has passed the execution phase. If this operand is omitted, control is given
to the location specified by the OK operand.

OK=
Specifies the location to be given control if the execution of the request is
successful. If this operand is omitted, control is given to the location following
the macro instruction if the request is successful.

NOJOE=
Specifies the location to be given control if the specified number of JOEs were
found.

OFFLINE=
Specifies the location to be given control if the job’s spool(s) is offline.

Note: OK=, NOJOE=, OFFLINE= must all be specified in order for any one of
them to be recognized.

PROTECT=
Specifies the location to be given control if the job’s output is protected. If this
operand is omitted, no check is made to determine if the job is protected.

Environment
v Main task.
v $WAIT can occur.

$JCTXADD – Add a $JCT Control Block Extension
Use the $JCTXADD macro to extend the $JCT (Job Control Table) control block
based on a length and a unique identifier specified by your installation. See “Using
the $JCTX Macro Extension Service” on page 11 for more information.

$JCAN

Chapter 3. JES2 Programmer Macros 173

Format Description

JCT=
Specifies the address of the $JCT control block to which JES2 should add this
extension.

This parameter is required.

ERRET=
Specifies the label to receive control if the extension cannot be added for a
reason other than those specified through the FOUND= or NOSPACE=
parameter (for example, the JCT= parameter does not point to a valid $JCT
control block).

If you do not specify a value for the FOUND= parameter, ERRET= specifies the
label to receive control if the extension cannot be added because an extension
with a matching type and modifier already exist. If you do not specify a value for
the NOSPACE= parameter, ERRET= specifies the label to receive control if the
extension cannot be added because the $JCT is too small.

You must specify the ERRET= parameter, the OKRET= parameter, or both.

TYPE=
Specifies either a 1 to 4-character string enclosed in quotes (‘xxxx’), or the
address of a 4-byte field containing such a string, to serve as an identifier for
the extension. The strings ‘IBM’ and ‘JES2’ are reserved for IBM use.

Note: JES2 pads character strings of less than 4 characters with trailing
blanks.

MOD=
Specifies a value (0-32767) that allows an application to specify a series of
extensions to the $JCT from a single source (through the TYPE= parameter)
and to differentiate extensions through this parameter.

MOD= can be specified as:
v A numeric value
v A symbol equated to a value
v A register containing a value
v The address of a 2-byte field containing the value

This parameter is required.

LENGTH=
Specifies the length of the extension (0-4095) to be added to the $JCT control
block. This specification must include the length of the $JCTX prefix area
(defined by the value of JCXORG-JCTX field).

The LENGTH= parameter can be specified as:

ÊÊ $JCTXADD JCT=rx-addr ,TYPE= ’xxxx’
rx-addr

,MOD=value ,LENGTH=value Ê

Ê ,OKRET=rx-addr
,ERRET=rx-addr

,ERRET=rx-addr
,OKRET=rx-addr

,FOUND=rx-addr
Ê

Ê
,NOSPACE=rx-addr

ÊÍ

$JCTXADD

174 z/OS V1R4.0 JES2 Macros

v A numeric value

v A symbol equated to a value

Note: Use an equate to define a field - field value:
JCTXULEN EQU JCTXUEND-JCTX

Then specify the value for length in the macro:
LENGTH=JCTXULEN

If you specify the field - field expression in the macro rather than using
an equate to define the expression, JES2 uses the relocatable
address from the expression rather than the value.

v A register containing a value

v The address of a 2-byte field containing the length.

The maximum size depends on the:

v $JCT size (IBM provides a 512-byte spool buffer; any additional space might
not be preserved from release to release. To determine the amount of spool
used by $JCT extensions, see “Using the $JCTX Macro Extension Service”
on page 11.)

v Buffer size (BUFSIZE= parameter on the SPOOLDEF initialization statement)

v Number of extensions already defined in the $JCT control block.

This parameter is required.

OKRET=
Specifies the label to receive control if JES2 adds the extension successfully;
R1 points to the new section on return.

You must specify the OKRET= parameter, the ERRET= parameter, or both.

FOUND=
Specifies the label to receive control if an extension with a matching type and
modifier already exists in the $JCT control block; R1 points to the existing
section on return.

If you do not specify this parameter, FOUND= defaults to the value of the
ERRET= parameter.

NOSPACE=
Specifies the label to receive control if there is insufficient space in the $JCT
control block to add this extension.

If you do not specify this parameter, NOSPACE= defaults to the value of the
ERRET= parameter.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 JES2 successfully added the extension. R1 points to the new

extension (corresponding to the OKRET= parameter).
4 JES2 did not add the extension because an extension with the

specified type and modifier already exists. R1 points to that
extension (corresponding to the FOUND= parameter).

8 JES2 did not add the extension because there was insufficient

$JCTXADD

Chapter 3. JES2 Programmer Macros 175

space in the $JCT control block for the extension. This return code
corresponds to the NOSPACE= parameter.

12 JES2 did not add the extension for one of the following reasons:
v An error was detected in the $JCT control block.
v An error was detected in the $JCTX control block.
v An input parameter was specified incorrectly.

This return code corresponds to the ERRET= parameter.

Environment
Authorization: Supervisor state, key 0 or 1.
Dispatchable unit mode: Task
JES environment: Any JES2 environment
Cross Memory Mode: PASN = HASN
AMODE: 24- or 31- bit
ASC mode: Primary
Interrupt status Enabled for I/O and external interrupts
Serialization: The $JCT control block must be serialized; this

could mean that the caller has to obtain the job lock
or the SJB lock.

Locks: No locks are obtained or freed by the $JCTXADD
macro.

Control parameters: None

Programming Requirements
You must specify $HCCT, $JCTX, and $TRE on the $MODULE invocation to use
this macro.

Restrictions
None.

Registers on Entry
R0 - R10: N/A
R11: HCT, HCCT, or HFCT, depending on JES2 environment.
R12: N/A
R13 Address of PCE or address of an available 72-byte save area
R14-15: N/A

Registers on Exit
R0: Used as a work register by the system.
R1: Pointer to the $JCT control block extension, or 0.
R2 - R13: Unchanged
R14 Used as a work register by the system.
R15: Return code

Example
$JCTXADD TYPE=’USER’,

MOD=1,
JCT=JCT,
LENGTH=JCXLEN1,
FOUND=ADDOK,
ERRET=EXTERR

ADDOK DS OH

$JCTXADD

176 z/OS V1R4.0 JES2 Macros

JCTX DSECT
ORG JCTXORG

JCTXLEN1 EQU *-JCTX Installation fields for extension 1
ORG JCXORG

JCTXLEN2 EQU *-JCTX Installation fields for extension 2
ORG JCXORG

This macro creates an extension with a type of ‘USER’ and a modifier of 1. The
$JCT address is in a register with a USING for the $JCT. The length value must
include the following:

v The JES2-defined header’s length (containing an eyecatcher, the ID, and the
extension’s length)

v The length of any installation fields to be added to the extension. (Begin all
installation fields at label JCXORG).

If the extension is successfully added (or already exists in the $JCT), processing
continues at the next sequential instruction. Otherwise, processing continues at
label EXTERR.

$JCTXEXP – Expand a $JCT Control Block Extension
Use the $JCTXEXP macro to extend the $JCT (Job Control Table) control block by
a length and a unique identifier specified by your installation. You cannot specify a
length shorter than the original extension. If you specify a shorter length, JES2
returns the length of the original extension. See “Using the $JCTX Macro Extension
Service” on page 11 for more information.

Format Description

JCT=
Specifies the address of the $JCT control block to which JES2 should expand
this extension.

This parameter is required.

ERRET=
Specifies the label to receive control if the extension cannot be expanded for a
reason other than those specified through the NOTFOUND= or NOSPACE=
parameter (for example, the JCT= parameter does not point to a valid $JCT
control block).

If you do not specify a value for the NOTFOUND= parameter, ERRET=
specifies the label to receive control if the extension does not exist. If you do
not specify a value for the NOSPACE= parameter, ERRET= specifies the label
to receive control if the extension cannot be expanded because the $JCT is too
small.

You must specify the ERRET= parameter, the OKRET= parameter, or both.

ÊÊ $JCTXEXP JCT=rx-addr ,TYPE= ’xxxx’
rx-addr

,MOD=value ,LENGTH=value Ê

Ê ,ERRET=rx-addr
,OKRET=rx-addr ,NOTFOUND=rx-addr ,NOSPACE=rx-addr

ÊÍ

$JCTXADD

Chapter 3. JES2 Programmer Macros 177

TYPE=
Specifies either a 1 to 4-character string enclosed in quotes (‘xxxx’), or the
address of a 4-byte field containing such a string, to serve as an identifier for
the extension. The strings ‘IBM’ and ‘JES2’ are reserved for IBM use.

Note: JES2 pads character strings of less than 4 characters with trailing
blanks.

MOD=
Specifies a value (0-32767) that allows an application to specify a series of
extensions to the $JCT from a single source (through the TYPE= parameter)
and to differentiate extensions through this parameter.

MOD= can be specified as:
v A numeric value
v A symbol equated to a value
v A register containing a value
v The address of a 2-byte field containing the value

This parameter is required.

LENGTH=
Specifies the total length of the $JCT control block extension after expansion.
Specify the total length of the extension. For example, if the original extension
was 20 bytes long and this expansion adds an additional 10 bytes, specify 30
bytes for this parameter. This specification must include the length of the $JCTX
prefix area (defined by the value of the JCXORG-JCTX field).

The LENGTH= parameter can be specified as:

v A numeric value

v A symbol equated to a value

Note: Use an equate to define a field - field value:
JCTXULEN EQU JCTXUEND-JCTX

Then specify the value for length in the macro:
LENGTH=JCTXULEN

If you specify the field - field expression in the macro rather than using
an equate to define the expression, JES2 uses the relocatable
address from the expression rather than the value.

v A register containing a value

v The address of a 2-byte field containing the length.

The maximum size depends on the:

v $JCT size (IBM provides a 512-byte spool buffer; any additional space might
not be preserved from release to release. To determine the amount of spool
used by $JCT extensions, see “Using the $JCTX Macro Extension Service”
on page 11.)

v Buffer size (BUFSIZE= parameter on the SPOOLDEF initialization statement)

v Number of extensions already defined in the $JCT control block.

This parameter is required.

$JCTXEXP

178 z/OS V1R4.0 JES2 Macros

OKRET=
Specifies the label to receive control if JES2 expands the extension
successfully; R1 points to the new section on return.

You must specify the OKRET= parameter, the ERRET= parameter, or both.

NOTFOUND=
Specifies the label to receive control if the extension could not be expanded
because it does not exist; R1 points to the existing section on return.

If you do not specify this parameter, NOTFOUND= defaults to the value of the
ERRET= parameter.

NOSPACE=
Specifies the label to receive control if there is insufficient space in the $JCT
control block to expand this extension.

If you do not specify this parameter, NOSPACE= defaults to the value of the
ERRET= parameter.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 JES2 successfully expanded the extension. R1 points to the new

extension (corresponding to the OKRET= parameter).
4 JES2 did not expand the extension because an extension with the

specified type and modifier already exists. This return code
corresponds to the NOTFOUND= parameter.

8 JES2 did not expand the extension because there was insufficient
space in the $JCT control block for the extension. This return code
corresponds to the NOSPACE= parameter.

12 JES2 did not expand the extension for one of the following reasons:
v An error was detected in the $JCT control block.
v An error was detected in the $JCTX control block.
v An input parameter was specified incorrectly.

This return code corresponds to the ERRET= parameter.

Environment
Authorization: Supervisor state, key 0 or 1.
Dispatchable unit mode: Task
JES environment: Any JES2 environment
Cross Memory Mode: PASN = HASN
AMODE: 24- or 31- bit
ASC mode: Primary
Interrupt status Enabled for I/O and external interrupts
Serialization: The $JCT control block must be serialized; this

could mean that the caller has to obtain the job lock
or the SJB lock.

Locks: No locks are obtained or freed by the $JCTXADD
macro.

Control parameters: None

Programming Requirements
You must specify $HCCT, $JCTX, and $TRE on the $MODULE invocation to use
this macro.

$JCTXEXP

Chapter 3. JES2 Programmer Macros 179

Restrictions
None.

Registers on Entry
R0 - R10: N/A
R11: HCT, HCCT, or HFCT, depending on JES2 environment.
R12: N/A
R13 Address of PCE or address of an available 72-byte save area
R14-15: N/A

Registers on Exit
R0: Used as a work register by the system.
R1: Pointer to the $JCT control block extension, or 0.
R2 - R13: Unchanged
R14 Used as a work register by the system.
R15: Return code

Example
$JCTXEXP TYPE=’USER’,

MOD=1,
JCT=JCT,
LENGTH=JCXLEN1,
ERRET=EXTERR

This macro expands an extension with a type of ‘USER’ and a modifier of 1. The
$JCT address is in a register with a USING for the $JCT. The length value should
include the following:

v The JES2-defined header’s length (containing an eyecatcher, the ID, and the
extension’s length)

v The length of any installation fields to be added to the extension. (Begin all
installation fields at label JCXORG).

For sample definitions, refer to “Example” on page 176.

If the extension is successfully expanded, processing continues at the next
sequential instruction. Otherwise, processing continues at label EXTERR.

$JCTXGET – Locate a $JCT Control Block Extension
Use the $JCTXGET macro to locate a $JCT (Job Control Table) control block
extension. See “Using the $JCTX Macro Extension Service” on page 11 for more
information.

$JCTXEXP

180 z/OS V1R4.0 JES2 Macros

Format Description

JCT=
Specifies the address of the $JCT control block where this extension resides.

This parameter is required.

ERRET=
Specifies the label to receive control if the extension cannot be found.

You must specify the ERRET= parameter, the OKRET= parameter, or both.

TYPE=
Specifies either a 1 to 4-character string enclosed in quotes (‘xxxx’), or the
address of a 4-byte field containing such a string, to serve as an identifier for
the extension. The strings ‘IBM’ and ‘JES2’ are reserved for IBM use.

Note: JES2 pads character strings of less than 4 characters with trailing
blanks.

MOD=
Specifies a value (0-32767) that allows an application to specify a series of
extensions to the $JCT from a single source (through the TYPE= parameter)
and to differentiate extensions through this parameter.

MOD= can be specified as:
v A numeric value
v A symbol equated to a value
v A register containing a value
v The address of a 2-byte field containing the value

This parameter is required.

FOUND=
Specifies the label to receive control if JES2 locates an extension with a
matching type and modifier in the $JCT control block; R1 points to the section
on return.

The FOUND= parameter is mutually exclusive with the OKRET= parameter.

OKRET=
Specifies the label to receive control if JES2 locates an extension with a
matching type and modifier in the $JCT control block; R1 points to the section
on return.

The OKRET= parameter is mutually exclusive with the FOUND= parameter.

You must specify the OKRET= parameter, the ERRET= parameter, or both.

ÊÊ $JCTXGET JCT=rx-addr ,TYPE= ’xxxx’
rx-addr

,MOD= value
rx-addr

Ê

Ê ,FOUND= ,
,ERRET=

,OKRET=rx-addr
,ERRET=rx-addr

,ERRET=rx-addr
,OKRET=rx-addr

,NOFOUND=rx-addr
ÊÍ

$JCTXGET

Chapter 3. JES2 Programmer Macros 181

NOTFOUND=
Specifies the label to receive control if an extension with a matching type and
modifier does not exist in the $JCT control block.

If you do not specify this parameter, it defaults to the ERRET= value.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 JES2 successfully located the extension. R1 points to the extension

(corresponding to the FOUND= parameter).
4 JES2 did not locate the extension because an extension with the

specified type and modifier does not exist. This return code
corresponds to the NOTFOUND= parameter.

8 JES2 did not locate the extension for one of the following reasons:
v An error was detected in the $JCT control block.
v An error was detected in the $JCTX control block.
v An input parameter was specified incorrectly.

This return code corresponds to the ERRET= parameter.

Environment
Authorization: Supervisor state, key 0 or 1.
Dispatchable unit mode: Task
JES environment: Any JES2 environment
Cross Memory Mode: PASN = HASN
AMODE: 24- or 31- bit
ASC mode: Primary
Interrupt status Enabled for I/O and external interrupts
Serialization: None
Locks: No locks are obtained or freed by the $JCTXADD

macro.
Control parameters: None

Programming Requirements
You must specify $HCCT, $JCTX, and $TRE on the $MODULE invocation to use
this macro.

Restrictions
Any data beyond the defined extension should not be referenced or modified.

Registers on Entry
R0 - R10: N/A
R11: HCT, HCCT, or HFCT, depending on JES2 environment.
R12: N/A
R13 Address of PCE or address of an available 72-byte save area
R14-15: N/A

Registers on Exit
R0: Used as a work register by the system.
R1: Pointer to the $JCT control block extension, or 0.
R2 - R13: Unchanged
R14 Used as a work register by the system.

$JCTXGET

182 z/OS V1R4.0 JES2 Macros

R15: Return code

Example
$JCTXGET TYPE=’USER’,

MOD=1,
JCT=JCT,
ERRET=EXTERR

This macro locates an extension with a type of ‘USER’ and a modifier of 1. The
$JCT address is in a register with a USING for the $JCT.

Any data beyond the extension should not be referenced or modified. To find the
total length of the extension, refer to the JCXLEN field in each $JCT extension. If
you need to increase the length of an extension to include referenced data, use the
$JCTXEXP macro.

If the extension is successfully located, processing continues at the next sequential
instruction. Otherwise, processing continues at label EXTERR.

$JCTXREM – Remove a $JCT Control Block Extension
Use the $JCTXREM macro to remove a $JCT (Job Control Table) control block
extension based on a unique identifier specified by your installation. See “Using the
$JCTX Macro Extension Service” on page 11 for more information.

Format Description

JCT=
Specifies the address of the $JCT control block from which JES2 should delete
this extension.

This parameter is required.

ERRET=
Specifies the label to receive control if the extension cannot be deleted for a
reason other than those specified through the NOTFOUND= parameter (for
example, the JCT= parameter does not point to a valid $JCT control block).

If you do not specify a value for the NOTFOUND= parameter, ERRET=
specifies the label to receive control if the extension cannot be deleted because
it does not exist.

You must specify the ERRET= parameter, the OKRET= parameter, or both.

TYPE=
Specifies either a 1 to 4-character string enclosed in quotes (‘xxxx’), or the
address of a 4-byte field containing such a string, to serve as an identifier for
the extension. The strings ‘IBM’ and ‘JES2’ are reserved for IBM use.

Note: JES2 pads character strings of less than 4 characters with trailing
blanks.

ÊÊ $JCTXREM JCT=rx-addr ,TYPE= ’xxxx’
rx-addr

,MOD=value ,ERRET=rx-addr
,OKRET=rx-addr

Ê

Ê
,NOTFOUND=rx-addr

ÊÍ

$JCTXGET

Chapter 3. JES2 Programmer Macros 183

MOD=
Specifies a value (0-32767) that allows an application to specify a series of
extensions to the $JCT from a single source (through the TYPE= parameter)
and to differentiate extensions through this parameter.

MOD= can be specified as:
v A numeric value
v A symbol equated to a value
v A register containing a value
v The address of a 2-byte field containing the value

This parameter is required.

OKRET=
Specifies the label to receive control if JES2 deletes the extension successfully;
R1 points to the new section on return.

You must specify the OKRET= parameter, the ERRET= parameter, or both.

NOTFOUND=
Specifies the label to receive control if an extension with a matching type and
modifier is not found in the $JCT control block.

If you do not specify this parameter, NOTFOUND= defaults to the value of the
ERRET= parameter.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 JES2 successfully deleted the extension. The result corresponds to

the macro’s OKRET= parameter.
4 JES2 did not delete the extension because a section with the

specified type and modifier does not exist. This return code
corresponds to the NOTFOUND= parameter.

8 JES2 did not delete the extension for one of the following reasons:
v An error was detected in the $JCT control block.
v An error was detected in the $JCTX control block.
v An input parameter was specified incorrectly.

This return code corresponds to the ERRET= parameter.

Environment
Authorization: Supervisor state, key 0 or 1.
Dispatchable unit mode: Task
JES environment: Any JES2 environment
Cross Memory Mode: PASN = HASN
AMODE: 24- or 31- bit
ASC mode: Primary
Interrupt status Enabled for I/O and external interrupts
Serialization: The $JCT control block must be serialized; this

could mean that the caller has to obtain the job lock
or the SJB lock.

Locks: No locks are obtained or freed by the $JCTXREM
macro.

Control parameters: None

$JCTXREM

184 z/OS V1R4.0 JES2 Macros

Programming Requirements
You must specify $HCCT, $JCTX, and $TRE on the $MODULE invocation to use
this macro.

Restrictions
None.

Registers on Entry
R0 - R10: N/A
R11: HCT, HCCT, or HFCT, depending on JES2 environment.
R12: N/A
R13 Address of PCE or address of an available 72-byte save area
R14-15: N/A

Registers on Exit
R0 - R1: Used as work registers by the system.
R2 - R13: Unchanged
R14 Used as a work register by the system.
R15: Return code

Example
$JCTXREM TYPE=’USER’,

MOD=1,
JCT=JCT,
ERRET=EXTERR

This macro deletes an extension with a type of ‘USER’ and a modifier of 1. The
$JCT address is in a register with a USING for the $JCT.

If the extension is successfully deleted, processing continues at the next sequential
instruction. Otherwise, processing continues at label EXTERR.

$JQEJNUM
$JQEJNUM generates in-line code to obtain the job number from a specified JQE.
The macro takes care of determining the mode of the JES2 checkpoint and which
JQE fields to use.

Format Description

JQE
The JQE from which to obtain the job number.

REG
The register the job number is returned to.

Return Codes
None.

ÊÊ
symbol

$JQEJNUM ,JQE= label
(Rn)

,REG=Rx ÊÍ

$JCTXREM

Chapter 3. JES2 Programmer Macros 185

Environment
v JES2 main task

$LOGMSG – Log a Job-related Message
$LOGMSG places job-related messages into the job’s JOBLOG data set and
optionally writes the messages to the operator using WTO. Invoke this macro during
any phase of job processing except conversion and execution.

If issuing this macro from JES2 installation exits 2, 3, and 4, you must first issue a
$SUBIT call to request that the subtask allow $LOGMSG to run under that subtask.

When using this macro, you must:
v Ensure that the JCT and primary allocation IOT addresses are non-zero.
v Ensure that the JCTTRAK and IOTTRACK fields are non-zero.
v Construct the message chain.
v Ensure that the job is not in conversion or execution phase.

Format Description

IOT=
This is the address of the job’s primary allocation IOT (as pointed to by the
JCTIOT). IOT= is required.

JCT=
JCT= specifies the address of the JCT that represents the job associated with
the messages. JCT= is required.

MSGAREA=
MSGAREA= specifies the starting address of a chain of messages JES2 places
into the job-related data set. The messages are in WTO parameter list format
which has a two fullword header.

The header consists of:

Word 1
Length of the entire WTO parameter list including the message text plus
the 8-byte prefix to the text.

This field specifies the length of the area to be freed when
MSGFREE=YES is specified.

Word 2
Address of the next message or 0.

MSGAREA= is required.

ÊÊ
symbol

$LOGMSG IOT=addrx ,JCT=addrx ,MSGAREA=addrx Ê

Ê
,ERRET= (Rn)

label
NO

,MSGFREE= YES

,REQUESTOR='string' Ê

Ê
0

,SP= subpool
NO

,WTO= YES

ÊÍ

$JQEJNUM

186 z/OS V1R4.0 JES2 Macros

ERRET=(Rn)|label
Specifies the label of, or a register that contains, the address of a routine that
receives control if the operation was unsuccessful (that is, if register 15 contains
a nonzero return code).

MSGFREE=NO|YES
MSGFREE= specifies whether JES2 frees the message areas after processing.
If you code MSGFREE=YES, you must also code SP=. The default for
MSGFREE is NO.

REQUESTOR=‘string’
Specifies the 1 to 255-character identifier of the caller of this macro. JES2 adds
this information to your message to provide additional information about the
origin of the message. REQUESTOR= is required and must be enclosed in
single-quotes.

Note: This information is currently not used by JES2; rather it is used to
provide a reason for issuing the message, such as: security authorization
failed for job validation.

SP=0|subpool
SP= represents the subpool in which the message areas are located. You must
code SP= if you coded MSGFREE=YES. The value of SP= must be a literal
value or an equate. SP= defaults to 0.

WTO=NO|YES
Specifies whether to write the messages to the operator using WTO. The
default is NO.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful - no errors.
4 Unable to open the JOBLOG data set.

Environment
v JES2 subtask.
v MVS WAITs can occur.

$MID – Assign JES2 Message Identification
Use $MID to set the global variable[symbol] &MID to an EBCDIC character string
so that, when the variable[symbol] is coded as the first portion of the message text
field of an operating system WTO macro instruction, the correct message
identification is displayed with the message.

This macro instruction should be coded directly before the WTO macro instruction.

Format Description

ÊÊ
symbol

$MID id-value ÊÍ

$LOGMSG

Chapter 3. JES2 Programmer Macros 187

id-value
Specifies the numeric 3-digit message identification of the message appearing
in the succeeding WTO macro expansion.

Note: Coding should not depend on the exact length or format of the character
string assigned to the &MID variable symbol.

Environment
v Main task, subtask, or user address space.
v $WAIT cannot occur.

$MODCHK – Load Module Verification
Use the $MODCHK macro instruction to request that JES2 verify the named load
module routine. $MODCHK can verify:

v if the module resides below 16 megabytes in virtual storage

v if the module resides in common storage

v if the module was assembled at the same version as the JES2 nucleus and with
the correct level of macros

v if the module name matches that specified in the MIT (MITNAME)

In addition, $MODCHK can:
v propagate, to the XIT, $EXIT points that are defined in the module
v resolve, from the module’s $ENTRY points, $EXIT routines

Specifically, this macro is useful to guarantee that you have not inadvertently
attempted to mix MVS versions and that all modules are assembled at the same
system product (SP) level. This early verification and notification prevents an
attempt by JES2 to load an incorrect module and eventually terminate. An
unsuccessful verification causes JES2 to issue message $HASP875 with a specific
reason text.

Format Description

NAME=
Specifies the name of the load module or assembly module to be verified by

ÊÊ
symbol

$MODCHK NAME= 'xxxxxxxx'
mod-name
(R1)

,ADDR= label
(R0)

Ê

Ê ,TEST= RMODE24
(,COMMON)

,MIT
,VERSION
,NAME
,EXITPTS
,EXITRTNS
,TABLES

,ERRET= label
(Rn)

Ê

Ê
NO

,MESSAGE= YES

ÊÍ

$MID

188 z/OS V1R4.0 JES2 Macros

$MODCHK. Specify a 1- to 8-character module name, a label referencing the
beginning of the module, or a register (R1-R10) containing the address of the
module. This is a required keyword.

ADDR=
Specifies the address of this module by either a label or a register (R0, R2-R10)
containing the module address. You must code this keyword if this module is
not loaded by a $MODLOAD or the module was loaded by $MODLOAD and
TYPE=OS was specified. Otherwise, this keyword is optional; if it is not coded,
the address is taken from the $LMT entry that JES2 built when the module was
loaded by $MODLOAD.

TEST=
Specifies which module verification tests are to be performed. If you specify
more than one test type, enclose the list in parentheses and separate each type
by a comma, for example, TEST=(NAME,RMODE24,VERSION). This is a
required keyword.

Test Type Meaning

RMODE24 Tests that the module resides below 16-megabytes in virtual
storage.

COMMON Tests that the module resides in common storage.

MIT Tests that the module is large enough to contain the MIT, that
the MIT entry table pointer points to a valid field within the
module, and that the MIT is located at the beginning of the
module.

VERSION Tests that the version of JES2 and this module are at the same
level and that all macros contained in the module are
assembled at the correct level of JES2.

NAME Tests that the NAME= keyword specifies the same name as the
MITNAME specified in the MIT.

EXITPTS Propagate, to the XIT, any $EXIT points that are defined in the
module.

EXITRTNS Resolve any module $ENTRY points with $EXIT routines.

TABLES Resolve any dynamic tables within the module.

ERRET=
Specifies the address of an error routine that is to get control if the module fails
the test (that is, R15 is nonzero). Specify the address by either a label or a
register containing the address of this error routine. An error message can be
returned if MESSAGE=YES is also coded.

MESSAGE=
Specifies whether (YES) or not (NO) JES2 will issue message $HASP875 if any
test fails.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Test(s) was successful.
4 Test(s) failed. $MODCHK also returns a reason code that provides

additional information about why the tests failed.

$MODCHK

Chapter 3. JES2 Programmer Macros 189

Reason Codes for Return Code 4
When $MODCHK returns control, register 1 points to a storage area that contains
message text and a reason code. This storage is structured as described below
(byte 1 refers to the byte that’s pointed to by register 1; byte n refers to the last
byte of the storage area).

Byte position Contents

byte 1 and 2 These bytes are not part of the intended programming interface.

byte 3 The length of the message text portion of the variable length text
field that follows.

byte 4 to byte n
Variable length text field. This field contains message text that
explains the reason code, followed by a comma and a blank
character. The blank character is followed by the character string
RC=nn. The variable nn contains one of the following reason codes
in character format. For a detailed explanation of the reason codes,
see documentation for JES2 message $HASP875 in z/OS JES2
Messages.

Reason Code Meaning

06 The RMODE must be 24.

07 The module name does not match its MIT.

08 The version of the module does not match the
version of JES2.

09 The module and JES2 were assembled with
different levels of MVS macros.

10 The module is not in common storage.

11 The module’s MIT is not valid.

12 JES2 could not find the module.

15 The module user version character string does not
match the version of JES2 that’s running.

16 The module IBM user version is not valid.

Environment
v JES2 main task limited (initialization).
v MVS WAIT may occur.

$MODELET – Load Module Deletion
Use the $MODELET macro to delete a specified JES2 load module and also
invalidate the load module table ($LMT) entry for this module. You can use this
macro instruction only if the module was loaded by a $MODLOAD and TYPE=JES2
was specified.

$MODCHK

190 z/OS V1R4.0 JES2 Macros

Format Description

NAME=
Specifies the name of the module to be deleted. Specify a 1- to 8-character
module name, a label referencing the beginning of the module, or a register
(R1-R10) containing the address of the name. This is a required keyword.

ERRET=
Specifies the label or register that contains the address of an error routine that
receives control if the module is not successfully deleted.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Load module successfully deleted.
4 Module not loaded by $MODLOAD with TYPE=JES2.

Environment
v JES2 main task and initialization.
v no MVS or JES2 waits can occur.

CAUTION:

The caller is responsible for ensuring that exit pointers into the module can
be changed to zero at this time. It is recommended that you use this macro
only when all exits are disabled or during JES2 initialization.

$MODEND – Generate End of Module
Use $MODEND to generate the MIT entry table (MITETBL) to fill in the 256-bit
mask field in the MIT according to what exits are defined within the module, and to
calculate the length for the CSECT created by $MODULE.

This macro instruction must be coded at the end of every module, with no
exceptions.

Format Description

Environment
v All environments.
v $WAIT is not applicable.

ÊÊ
symbol

$MODELET
NAME= 'mod-name'

label
(Rn)

,ERRET= label
(Rn)

ÊÍ

ÊÊ
symbol

$MODEND ÊÍ

$MODELET

Chapter 3. JES2 Programmer Macros 191

$MODLOAD – Module Load
Use $MODLOAD to load JES2 and OS load modules. When loading the module,
the system uses the RENT, RMODE and page alignment attributes assigned by the
linkage editor.

Format Description

NAME=
Specifies the name of the module to be loaded by MODLOAD. Specify a 1- to
8-character module name, a label of a field that contains the name, or a register
that contains the address of the name. This is a required keyword.

SUBPOOL=
Specifies the storage location into which the module should be loaded.

nnn
Specifies the subpool (0 to 255) for the directed load. The module is to be
loaded using the standard module search algorithms.

LPA
Specifies the module is in LPA.

Notes:

1. This parameter is not supported for OS load modules.

2. It is suggested this parameter be used to load into the common storage
area. However, all loads are supported.

TYPE=
Specifies the type of load module to be loaded. If the specified module is a
JES2 module and successfully loaded, it receives a $LMT entry; OS load
modules do not.

MESSAGE=
Specifies whether $MODLOAD is to issue the $HASP875 message if the load
fails (return code 8).

IFEXISTS
If JES2 finds the module and the module has errors, issue the message. If
JES2 is unable to find the module, do not issue the message.

YES
If any errors are encountered, issue the message.

NO
If errors are encountered, do not issue the message.

ERRET=
Specifies the label or register that contains the address of an error routine that
receives control if the module is not successfully loaded.

ÊÊ
symbol

$MODLOAD
NAME= 'mod-name'

label
(Rn)

JES2
,TYPE= OS

Ê

Ê
,SUBPOOL= nnn

LPA
NO

,MESSAGE= IFEXISTS
YES

,ERRET= label
(Rn)

ÊÍ

$MODLOAD

192 z/OS V1R4.0 JES2 Macros

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Load module successfully loaded. If TYPE=JES2, register 1

contains the address of the $LMT. If TYPE=OS, register 1 contains
the address of the load module.

4 Load module was not loaded because the module is already in
storage. JES2 ignores this subpool request call and uses the
module where it was loaded. JES2 returns, in register 1, the $LMT
entry address for the module. This applies to JES2 modules only.

8 Load failed. $MODULE also returns a reason code that provides
additional information about why the load failed.

Reason Codes for Return Code 8
When $MODULE returns control, register 1 points to a storage area that contains
message text and a reason code. This storage is structured as described below
(byte 1 refers to the byte that’s pointed to by register 1; byte n refers to the last
byte of the storage area).

Byte position Contents

byte 1 and 2 These bytes are not part of the intended programming interface.

byte 3 The length of the message text portion of the variable length text
field that follows.

byte 4 to byte n
Variable length text field. This field contains message text that
explains the reason code, followed by a comma and a blank
character. The blank character is followed by the character string
RC=nn. The variable nn contains one of the following reason codes
in character format. For a detailed explanation of the reason codes,
see documentation for JES2 message $HASP875 in z/OS JES2
Messages.

Reason Code Meaning

01 There is insufficient storage for the load module
table entry.

02 The module cannot be loaded.

03 The module is not reentrant.

04 New CSA or LPA are not valid on a hot start.

05 There is insufficient storage to load the module

14 An exit 0 routine made a $MODLOAD call.

Environment
v JES2 main task and initialization.
v MVS WAIT may occur.

CAUTION:

An exit 0 routine must not use $MODLOAD to load common storage JES2
modules.

$MODLOAD

Chapter 3. JES2 Programmer Macros 193

$MODULE – Prepare a JES2 Module or Expand Control Block
Mappings

You must use $MODULE to prepare a JES2 exit module or any other JES2 module
to run in one of the JES environments. You can also use $MODULE in any other
module to expand mappings of certain MVS or JES2 control blocks.

Preparing a JES2 Module
You must code $MODULE once in each module immediately after a COPY
$HASPGBL assembler statement and before any other code. No JES2 modules
are exceptions to this rule. $MODULE allows you to:

v Name the module and define the JES environment in which it will run.

v Establish the module’s RMODE.

v Define the module as either read-only (reentrant) or non-read-only.

v Request that JES2 verify whether the module was assembled using the correct
level of the MVS macro library.

v Specify JES2 or MVS control block mappings that $MODULE is to include in the
module. The table at the end of this topic lists the control block mappings
(dsects) that you can specify.

v Title the assembly listing and control printing of that listing.

Expanding MVS or JES2 Control Block Mappings
You can code $MODULE in any module, such as an SMF exit, to include control
block mappings in the module. $MODULE allows you to:

v Specify JES2 or MVS control block mappings that $MODULE is to include in
your module. The table at the end of this topic lists the control block mappings
(dsects) that you can specify.

v Request that $MODULE include in your module implicitly required control block
mappings.

v Title the assembly listing and control the printing of that listing.

$MODULE

194 z/OS V1R4.0 JES2 Macros

Format Description - Preparing a JES2 Module

Format Description - Expanding Control Block Mappings

Parameter Descriptions

Note: The parameters that you can use depends upon which form of the
$MODULE macro you use. To determine which parameters you can use, see
either “Format Description - Preparing a JES2 Module” or “Format
Description - Expanding Control Block Mappings”.

symbol
Specifies the name you want assigned to the control section that you are
defining. $MODULE generates a CSECT or RSECT statement and assigns this
name to that statement. $MODULE also assigns this name to the assembly
variable &J2SECTN and the string CSECT or RSECT to the assembly variable
&J2SECTT.

Note: Do not specify this name on any other $ENTRY or $MODULE
statements.

ENVIRON=
Specifies the environment in which this module will run. $MODULE sets the
assembly variable &ANVIRON equal to the value you specify on the
ENVIRON= parameter.

ÊÊ
symbol

$MODULE ENVIRON= FSS
JES2
SUBTASK
USER

Ê

Ê
,ENTRIES= name1

(name1)
,name2,...

,RMODE= ANY
24

Ê

Ê
,RSECT= YES

NO
CHECK

,SPLEVEL= NOCHECK

Ê

Ê
,SYSP=(print,gen,data,listmvs,listjes) ,TITLE=module title

Ê

Ê
,dsectname=

,dsectname,...

ÊÍ

ÊÊ $MODULE
ALL

,REQCBS= JES2
NONE

,SYSP=(print,gen,data,listmvs,listjes)
Ê

Ê
,TITLE=module title

,dsectname=
,dsectname,...

ÊÍ

$MODULE

Chapter 3. JES2 Programmer Macros 195

FSS
The module will run in the functional subsystem environment. If you omit
the RSECT= parameter, $MODULE generates an RSECT statement and
assigns the string RSECT to the assembly variable &J2SECTT. $MODULE
establishes addressability to the HFCT by generating the following USING
statement in the assembly module:
USING HFCT,R11

JES2
The module will run in the JES2 main task environment. If you omit the
RSECT= parameter, $MODULE generates a CSECT statement and assigns
the string CSECT to the assembly variable &J2SECTT. $MODULE
establishes addressability to the HCT and the PCE by generating the
following USING statements in the assembly module:
USING HCT,R11
USING PCE,R13

SUBTASK
The module will run in the JES2 subtask environment. If you omit the
RSECT= parameter, $MODULE generates an RSECT statement and
assigns the string RSECT to the assembly variable &J2SECTT. $MODULE
establishes addressability to the HCT by generating the following USING
statement in the assembly module:
USING HCT,R11

USER
The module will run in the user environment. If you omit the RSECT=
parameter, $MODULE generates an RSECT statement and assigns the
string RSECT to the assembly variable &J2SECTT. $MODULE establishes
addressability to the HCCT by generating the following USING statement in
the assembly module:
USING HCCT,R11

ENTRIES=
Specifies one or more names of tables or routines in the assembly module.
$MODULE creates entries for these names in the module-end table, thus
treating these names as though they were defined on the $ENTRY macro.

If your program builds tables by using any of the following macros, use the
ENTRIES= parameter to create entries in the module-end table:
v $DCTTAB
v $DTETAB
v $PCETAB
v $RDIDTAB
v $SCANTAB
v $SYMTAB
v $TIDTAB
v $VERTAB
v $WSTAB

REQCBS=
Specifies whether $MODULE is to generate:

v control block mappings that are implicitly required by the control block
mappings specified on the $MODULE macro

v control block mappings that are required by the particular assembly
environment

$MODULE

196 z/OS V1R4.0 JES2 Macros

ALL
Generate mappings of all implicitly required JES2 and MVS control blocks
and mappings of all control blocks required by the assembly environment.

JES2
Generate mappings of only implicitly required JES2 control blocks and
mappings of JES2 control block mappings required by the assembly
environment.

NONE
Do not generate mappings of any implicitly required control blocks or
mappings of any control blocks required by the assembly environment.

RMODE=
Specifies the control section’s residence mode. If you want $MODULE to
generate an RMODE assembler statement within the control section, code the
RMODE= parameter. If you do not want an RMODE assembler statement
generated, omit this parameter.

ANY
The control section can be placed above or below 16 megabytes.

24 The control section must be placed below 16 megabytes.

RSECT=
Specifies whether the control section is read-only (reentrant).

YES
The control section is read-only. $MODULE generates an assembler
RSECT statement and assigns the string RSECT to the assembly variable
&J2SECTT. The assembler also performs some checks to determine
whether the control section violates any rules of reentrant programming.

NO
The control section is not read-only. $MODULE generates an assembler
CSECT statement and assigns the string CSECT to the assembly variable
&J2SECTT.

If you omit this parameter, $MODULE uses the value specified on the
ENVIRON= parameter to determine whether to generate a CSECT or an
RSECT statement.

SPLEVEL=
Specifies whether JES2 is to check each installation provided module that it
loads to ensure that the module was assembled with the correct level of the
MVS macro library.

CHECK
JES2 is to perform the check. This is the default and the option that IBM
recommends you select.

NOCHECK
JES2 is to bypass checking. IBM strongly recommends that you specify
SPLEVEL=CHECK.

SYSP=(print,gen,data,listmvs,listjes)
Specifies values that control the printing of the assembly listing.

print
Controls whether code generated by the $SCANTAB macro is printed in the
assembly listing.

$MODULE

Chapter 3. JES2 Programmer Macros 197

v To suppress printing the $SCANTAB macro statements and the
generated code, specify OFF.

v To suppress printing the generated code, specify NOGEN.

v If you want to continue using the PRINT values that are in use at the
time you issue $SCANTAB, specify ON or GEN.

The default is NOGEN.

Note: $MODULE assigns the print value to the assembly variable
&J2PRTSW Installations can use this variable to control printing of
installation-provided macros that are used within this module.

gen
Controls whether expansions of executable macros are printed in the
assembly listing
v To print macro expansions, specify GEN.
v To suppress printing of macro expansions, specify NOGEN.

The default is GEN.

data
Controls printing of data constants in the assembly listing.

v To print all of the object code generated for each constant, specify DATA.

v To suppress printing of all but the first eight bytes of object code
generated for each constant, specify NODATA.

The default is NODATA.

Note: If you have specified NOGEN for the gen positional parameter, the
data parameter has no affect on constants generated during macro
processing.

listmvs
Controls whether MVS DSECTs that are specified on the $MODULE macro
are printed in the assembly listing.
v To print the DSECTs, specify GEN.
v To suppress printing the DSECTs, specify NOGEN.

The default is NOGEN.

listjes
Controls whether JES2 DSECTs that are specified on the $MODULE macro
are printed in the assembly listing.
v To print the DSECTs, specify GEN.
v To suppress printing the DSECTs, specify NOGEN.

The default is NOGEN.

Note: If you are coding the module definition form of $MODULE, at the time
you assemble your module you can override values coded on SYSP= by
using the assembler variable &SYSPARM as follows:
PARM=’SYSPARM(option-1[,option-2.,...option-n])’

Option-1, option-2, and so forth correspond to the positional parameters
on the SYSP parameter.

$MODULE

198 z/OS V1R4.0 JES2 Macros

TITLE=
Specifies a character string title for this module.

dsectname
Identifies the MVS and JES2 dsect mappings that are to be included in this
control section. You can specify the dsect names in any order. The order in
which you specify the dsect names has no affect on the order in which they
appear in your assembled module.

Each dsectname can be specified as one of the DSECTIDs shown in the
following table or as (dsectid,genid). The variable genid can either be specified
as GEN or NOGEN and overrides the “listmvs” and “listjes” values (for the
particular macro) specified through the SYSP= parameter.

Table 6 lists all the MVS DSECTs that can be specified on the $MODULE macro.
Table 7 lists all the JES2 DSECTs that can be specified on the $MODULE macro.

Table 6. MVS DSECTIDs That Can Be Specified on $MODULE
DSECTID DSECTID DSECTID DSECTID
ACB
ACBXL
ACEE
ABDPL
ADSR
ASCB
ASEO
ASSB
ASVT
ASXB
ATB
BASEA
BIND
BTOKP
CDE
CMPL
CNMB
CNPRM
CON
CONA
CONV
CSCB
CSVMODI
CTE
Ctrace
CTXI
CVT
CWPL
DCB
DEB
DOTUM
DSERV
DVA
DYN
DYN
EAECB
ECB
ECVT

EEPL
ENFCT
ENFPM
ENF40
ESSY
ETD
EWA
FDF
FRRS
FSCT
FSIP
FSVT
GDA
GEPL
ICYENF
IDX
IEDB
IOBE
IOCM
IOSB
IOSCAPU
JESCT
JFCB
JFCB
JSAB
JSCB
JSPA
JSQRY
JSRC
KEYS
LAA
LCA
LCT
LDA
LPDE
MGCR
MGCRE
MLTE
NEPL
NIB

NTASM
OHLD
ORE
OUCB
PDS
PJCO
PPL
PSA
PSCB
PSL
PSW
QUAA
RB
RESPA
MR
RPL
RQE
SAFP
SCB
SDMSE
SDRMT
SDWA
SIOT
SJACP
SJDLP
SJEXP
SJERP
SJFNP
SJGEP
SJKEY
SJKLP
SJMRP
SJOKY
SJPRFX
SJPUP
SJRC
SJREP
SJRSP
SJRUP
SJSCP

SJSMP
SJTRC
SJTRP
SJTSP
SMCA
SPP
SRB
SSCT
SSIB
SSOB
SSPJ
SSST
SSS2
SSTS
SSVT
STCB
SYMBP
TCB
TCT
TEXT
TIOT
TOKEN
UCB
UCM
UPFX
VRL
WPL
WQE
XSB
XSSP
XTLST
YIXAC
YIXEN
YIXIF
YIXJE
YIXPE
YIXSE
Z$XPL

$MODULE

Chapter 3. JES2 Programmer Macros 199

Table 7. JES2 DSECTIDs That Can Be Specified on $MODULE
DSECTID Macro(s) Description of Code Generated
$ACT $ACT Automatic command table DSECT
$ALINDEX $ALIN ALET index table DSECT
$APT $APT NJE/SNA application table DSECT
$ARMG $ARMG ARM support JESXCF message DSECT
$ARMT $ARMT ARM support trace record
$ARMWORK $ARMW ARM processor PCE work area DSECT
$ASYWORK $ASYW Asynchronous I/O PCE Work Area
$AUXCB $AUXCB Auxiliary Address Space Control Block
$BAT $BAT Buffer AUXILIARY table DSECT
$BFW $BFW 3800 buffer work area DSECT
$BLDMSGL $BLDM Build message parameter list DSECT
$BTG $BTG BADTRACK group element DSECT
$BUFFER $BUFFE I/O buffer DSECT
$CADDR $CADDR Common storage address table DSECT
$CAL $CAL Change LOG address list DSECT
$CALE $CALE Change LOG address list element
$CAPE $CAPE Communications access parameter element
$CAT $CAT Class attribute table DSECT
$CCE $CCE Cell control element DSECT
$CCW $CCW Channel command word definitions
$CHK $CHK (MVS) FSI checkpoint record DSECT
$CIRWORK $CIRW Common initialization routine PCE work area DSECT
$CK $CKLI Checkpoint block DSECT
$CKGPAR $CKGPA Checkpoint generalized parameter area
$CKM $CKM Checkpoint inter-member communication area
$CKPRECV $CKPR Checkpoint recovery dialog work area
$CKPTQCB $CKPT Checkpoint request control block
$CKPWORK $CKPW Checkpoint processor PCE work area DSECT
$CKV $CKV Checkpoint verification table
$CKW $CKW Checkpoint work area
$CKX $CKX Checkpoint reconfiguration JESXCF messages
$CBP $CBP CBIO work area
$CMB $CMB Console message buffer DSECT
$CNVWORK $CNVW Conversion processor PCE work area DSECT
$COMWORK $COMW Command processor PCE work area DSECT
$CPBLDPL $CPBL Cell pool build parameter list DSECT
$CPCWORK $CPCW Cell pool query cell work area
$CPEXPL $CPEXP Cell pool expand parameter list DSECT
$CPEBE $CPEBE Cell pool extent block element
$CPINDEX $CPIN Cell pool index table
$CPMASTR $CPMA Cell pool master table
$CPPWORK $CPPW Cell pool query pool work area
$CPXWORK $CPXW Cell pool query extent work area
$CPT $CPT Compaction table DSECT
$CRB $CRB Checkpoint/restart buffer area DSECT
$CRE $CRE Command redirection element DSECT
$CTW $CTW Checkpoint trace work area DSECT
$CWA $CWA MCS console work area DSECT
$DAIR $DAIR DAIRFAIL parameter list DSECT
$DAS $DAS Direct access spool data set DSECT
$DCHKWK $DCHKW DESTCHK authorization work area DSECT
$DCT $DCT Device control table DSECT
$DCTTAB $DCTTA DCT table ($GETABLE) DSECT
$DSB $DSB Data space block DSECT

$MODULE

200 z/OS V1R4.0 JES2 Macros

Table 7. JES2 DSECTIDs That Can Be Specified on $MODULE (continued)
DSECTID Macro(s) Description of Code Generated
$DSCT $DSCT Data set control table DSECT
$DSSCB $DSSCB Data set services control block DSECT
$DSTA $DSTA Console message buffer DSECT
$DSWA $DSWA Data space services work area
$DTE $DTE Daughter task element DSECT
$DTEACCT $DTEACCT Account DTE work area extension DSECT
$DTEALOC $DTEALOC DYNALLOC DTE work area extension DSECT
$DTECKCF $DTECKCF CKPT on CF DTE work area extension DSECT
$DTECKVR $DTECKVR CKPT VERS DTE work area extension DSECT
$DTECNV $DTECNV Conversion DTE work area extension DSECT
$DTEIMG $DTEIMG IMAGE DTE work area extension DSECT
$DTEOFF $DTEOFF offload DTE work area extension DSECT
$DTESPL $DTESPL Spool DTE work area extension DSECT
$DTESUBS $DTESUBS General subtask work area extension DSECT
$DTETAB $DTETAB DTE table ($GETABLE) DSECT
$DTEVTAM $DTEVTAM VTAM DTE work area extension DSECT
$DTEWTO $DTEWTO WTO DTE work area extension DSECT
$ERA $ERA Error recovery area DSECT
$ERPL $ERPL $Error parameter list DSECT
$EST $EST Estimated counts DSECT
$FCLWORK $FCLWORK FSS cleanup on EOM PCE work area
$FMH $FMH SNA function management header DSECT
$FMTCTAB $FMTCTAB Control block format table DSECT
$FSACB $FSAXB Functional subsystem application extension DSECT
$FSIEQU $FSIEQU FSI equates
$FSSCB $FSSWORK HASP FSS control block DSECT
$FSSXB $FSSXB Functional subsystem control block extension DSECT
$GASSIGN $GASSIGN Assign grouping token parameter list DSECT
$GCB $GCB GETREC chain control block DSECT
$GGEQU $GGEQU Generic grouping equates
$GKGET $GKGET GET grouping keys parameter list DSECT
$GKINIT $GKINIT Initialize grouping keys parameter list DSECT
$GRPKWD $GRPKWD Output processor grouping keywords
$GRPLIST $GRPLIST Output grouping parameter list
$GSINIT $GSINIT Initialize grouping strings parameter list DSECT
$GSTERM $GSTERM Terminate grouping strings parameter list DSECT
$GTW $GTW $#GET trace work area DSECT
$HASB $HASB Address space block DSECT
$HASXB $HASXB Address space extension block DSECT
$HCCT $HCCT Common storage communication table
$HCT $HCT HASP control table
$HDP $HDP Control block pool header DSECT
$HFAM $HFAM File allocation map
$HFAME $HFAME File allocation map entry
$HFCT $HFCT FSS communications table
$HSU $HSU HOCSETUP parameter list
$ICE $ICE SNA interface control element DSECT
$IEW $IEW IOT I/O error recovery work area
$IFMTABL $IFMTABL IPCS format table GEN and DSECT
$INIWARM $INIWARM HASPIR* to warmstart communications table
$IOT $IOT Input/output table DSECT
$IOTERR $IOTERR Spin IOT error recovery
$IPCSWRK $IPCSWRK IPCS work area DSECT
$JCMWORK $JCMWORK JOB command PCE work area

$MODULE

Chapter 3. JES2 Programmer Macros 201

Table 7. JES2 DSECTIDs That Can Be Specified on $MODULE (continued)
DSECTID Macro(s) Description of Code Generated
$JCT $JCT JOB control table DSECT
$JCTX $JCTX JOB control table extension DSECT
$JDSN $JDSN JES2 job data set name DSECT
$JFL $JFL JCL facility list DSECT
$JFW $JFW JCL facility work area DSECT
$JIB $JIB JOE information block DSECT
$JNEW $JNEW JESNEWS control block DSECT
$JNT $JNT Job number table DSECT
$JOE $JOE Job output element DSECT
$JOT $JOT Job output table DSECT
$JPAWORK $JPAWORK Job priority aging PCE work area
$JQE $JQE JOB queue element DSECT
$JVWA $JVWA JOT verification work area DSECT
$KAC $KAC Checkpoint application copy control block
$KAWA $KAWA Checkpoint allocation work area
$KEYLIST $KEYLIST SWB keylist table entry DSECT
$KIT $KIT Checkpoint information table DSECT
$LCK $LCK Spool offload checkpoint element DSECT
$LGRR $LGRR LOGREC record SDWAVRA DSECT
$LMT $LMT Load module table DSECT
$LRC $LRC Logical record DSECT
$MCODE $MCODE BSC code table DSECT
$MCT $MCT Master control table DSECT
$MIT $MIT Module information table DSECT
$MITETBL $MITETBL Module information table entry table DSECT
$MLMWORK $MLMWORK Line manager processor PCE work area DSECT
$MODMAP $MODMAP Module map directory DSECT
$MTQH $MTQH Main task queue HEADER
$MTRB $MTRB Main task request block
$MTL $MTL I/O error recovery MTTR save table element
$NAT $NAT Network nodes attached table
$NCC $NCC Network connection control DSECT
$NETACCT $NETACCT Network ACCOUNT table format and DSECT
$NHD $NHD RK header DSECT
$NHSB $NHSB RK header spool block
$NIT $NIT Network information table DSECT
$NJTWORK $NJTWORK HASP network job transmittor work area
$NMAP $NMAP Network path manager notify map
$NMR $NMR Network communication message record DSECT
$NOUSWRK $NOUSWRK Notify user message service area DSECT
$NPMWORK $NPMWORK Network path manager work area
$NRD $NRD $NHDREAD parameter list
$NSACT $NSACT Network subnet anchor table entry DSECT
$NSFP $NSFP Network SWBTU functions parameter list DSECT
$NSP $NSP SNA network services request unit DSECT
$NSRWORK $NSRWORK Network SYSOUT receiver PCE work area DSECT
$NSTWORK $NSTWORK Network SYSOUT transmittor PCE work area DSECT
$NTK $NTK Network path manager $NATGET token
$NTW $NTW Network path manager trace work area
$NWR $NWR $NHDWRT parameter list
$OFFSTBL $OFFSTBL Offset table DSECT
$OCR $OCR Output control record DSECT
$OCT $OCT Output control table DSECT
$ODPARM $ODPARM Output descriptor parameter list DSECT

$MODULE

202 z/OS V1R4.0 JES2 Macros

Table 7. JES2 DSECTIDs That Can Be Specified on $MODULE (continued)
DSECTID Macro(s) Description of Code Generated
$OPAWORK $OPAWORK Output priority aging PCE work area
$OUTWORK $OUTWORK Output processor PCE work area DSECT
$PADDR $PADDR Private area routine table
$PAL $PAL Page address list DSECT
$PARMLST $PARMLST Inline parameter list DSECT
$PCE $PCE Processor control element DSECT
$PCETAB $PCETAB PCE table ($GETABLE) DSECT
$PCIE $PCIE Program controlled interrupt element DSECT
$PCT $PCT Path manager control table DSECT
$PCTAB $PCTAB PC routine table ($GETABLE) DSECT
$PDDB $PDDB Peripheral data definition block DSECT
$PERFCB $PERFCB Performance data control block DSECT
$PIT $PIT Partitioned information table DSECT
$PLXEQU $PLXEQU PLX Equates
$PPPWORK $PPPWORK Print/punch processor PCE work area DSECT
$PQE $PQE 3800 page queue entry DSECT
$PQH $PQH 3800 pending page queue header DSECT
$PRE $PRE Processor recovery element DSECT
$PRGWORK $PRGWORK Purge processor PCE work area DSECT
$PRMD $PRMD Process mode table entry DSECT
$PSO $PSO Process SYSOUT work area DSECT
$PSOWORK $PSOWORK PSO processor PCE work area DSECT
$PSV $PSV Process save area DSECT
$QCT $QCT Quickcell control table DSECT
$QGET $QGET QGET parameter list DSECT
$QSE $QSE Shared queue control element DSECT
$QUEHEAD $QUEHEAD Queue header DSECT
$RAT $RAT Remote attribute table DSECT
$RCPWORK $RCPWORK Remote console processor work area
$RDRWORK $RDRWORK Reader services PCE work area DSECT
$RDT $RDT Remote destination table DSECT
$RESNAM $RESNAM SAF resource name DSECT
$RESWORK $RESWORK Resource manager PCE work area DSECT
$RGRPLST $RGRPLST TREGROUP parameter list
$RID $RID Record identifier DSECT
$RJCB $RJCB Reader JOB card buffer DSECT
$ROTT $ROTT Rolling trace table DSECT
$RVSTACK $RVSTACK Error stack DSECT
$RRTWA $RRTWA Reroute authorization work area DSECT
$RWL $RWL Remote work look-up table
$SAPID $SAPID Sysout API data area
$SBWA $SBWA Spool browse work area
$SAFINFO $SAFINFO Security information parameter list
$SCANTAB $SCANTAB SCAN table ($SCAN) DSECT
$SCANWA $SCANWA $SCAN facility work area DSECT
$SCAT $SCAT SYSOUT class attribute table DSECT
$SCID $SCID Summary of checkpoint information DSECT
$SCQ $SCQ Shared communication queue element DSECT
$SCR $SCR Spool control record DSECT
$SCT $SCT Spin communication table DSECT
$SDB $SDB Subsystem data set block DSECT
$SFRB $SFRB Scheduler facility request block DSECT
$SFSWORK $SFRWORK SJF services PCE work area DSECT
$SFW $SFW SWBTU functions work area DSECT

$MODULE

Chapter 3. JES2 Programmer Macros 203

Table 7. JES2 DSECTIDs That Can Be Specified on $MODULE (continued)
DSECTID Macro(s) Description of Code Generated
$SIG $SIG Spool signature record
$SJB $SJB Subsystem JOB block DSECT
$SJXB $SJXB Subsystem JOB extension block DSECT
$SJIOB $SJIOB Subsystem JOB input/output control block DSECT
$SMF $SMF SMF buffer DSECT
$SNFWORK $SNFWORK Spool management processor PCE work area DSECT
$SPIWORK $SPIWORK Sysout API PCE work area DSECT
$SPMWORK $SPMWORK Spool manager processor PCE work area DSECT
$SPNWORK $SPNWORK Spin processor PCE work area DSECT
$SQD $SQD Subtask queue descriptor DSECT
$STCWORK $STCWORK Status/cancel PCE work area DSECT
$STWORK $STWORK Subtask work area DSECT
$SWBIT $SWBIT SWB information table DSECT
$SWBMPRM $SWBMPRM SWBMERG parameter list DSECT
$SWEL $SWEL Signon work element DSECT
$SWR $SWR SWB read parameter List
$SYMCB $SYMCB Symptom record work area
$S35D $S35D WTO (SVC 35) work area DSECT
$TAB $TAB TRACK allocation block DSECT
$TEXWORK $TEXWORK Time excession monitor PCE work area
$TGB $TGB Allocation track group block DSECT
$TIDTAB $TIDTAB Trace ID table ($GETABLE) DSECT
$TIMWORK $TIMWORK STIMER/TTIMER PCE Work Area
$TLGWORK $TLGWORK Trace LOG processor PCE work area DSECT
$TOR $TOR Track one record DSECT
$TOT $TOT Track one table DSECT
$TQE $TQE Timer queue element format
$TRCA $TRCA Termination recovery control area DSECT
$TRE $TRE TCB recovery element DSECT
$TRX $TRX TCB recovery element extension DSECT
$TTE $TTE Trace table entry DSECT
$UPL $UPL UCB parameter list DSECT
$USERCBS $USERCBS User defined control blocks
$VERTAB $VERTAB Control block verification table DSECT
$WARMCA $WARMCA Warm start PCE communications area DSECT
$WARMWRK $WARM Warm start processor PCE work area DSECT
$WAVE $WAVE Work access verification element DSECT
$WORK $WORK $GETWORK/$RETWORK general work area DSECT
$WSA $WSA Work selection area DSECT
$WSP $WSP Work selection parameter area DSECT
$WSTAB $WSTAB Work selection table DSECT
$XBCWORK $XBCWORK $XBCAST parameter list DSECT
$XCMWORK $XCMWORK XCF command processor PCE work area DSECT
$XECB $XECB Extended ECB element DSECT
$XEQWORK $XEQWORK Execution processor PCE work area DSECT
$XFMWORK $XFMWORK XFR I/O manager processor PCE work area DSECT
$XIT $XIT Exit information table DSECT
$XMAS $XMAS XCF cross MAS coupling block
$XPL $XPL Exit parameter list DSECT
$XPWORK $XPWORK XCF processor work area DSECT
$XREQ $XREQ XCF information request message
$XRQ $XRQ XCF group exit request block
$XRT $XRT EXIT routine table DSECT

$MODULE

204 z/OS V1R4.0 JES2 Macros

Table 7. JES2 DSECTIDs That Can Be Specified on $MODULE (continued)
DSECTID Macro(s) Description of Code Generated

v $USERCBS, as received from IBM, is null. Installations can use it to provide their own
control block mappings.

v When you use $MODULE to prepare a non-IBM JES2 module (for example, an
installation-written exit routine), $MODULE always expands the mapping of $USERCBS.

Environment
v JES2 main task, JES2 subtask, user, or FSS.
v MVS WAIT and $WAIT are not applicable.

$MSG – Write to Operator Message Area
Use $MSG to generate a message text area to be referenced by the message
operand of the $WTO macro instruction.

Format Description

id Specifies the numeric 3-digit message identification that is to be displayed with
the message text.

message
Specifies the character string enclosed within single quotes that is to be
displayed as the informational portion of the message. If the purpose of this
macro instruction is to generate only the message identification, this operand
should be omitted.

SYMB=
Specifies the symbol-name that is to be assigned to the message text portion of
the area generated by the macro instruction. If this operand is specified, the
message operand must be specified. This symbol may be used to modify
variable portions of the message text before executing the corresponding $WTO
macro instruction. It must not be referred to directly by the $WTO macro
instruction; the symbol assigned to the beginning of the area must be used for
this purpose.

JOB=
Specifies whether the user, at $WTO macro execution time, has placed the
18-byte job identification information into the beginning of the text portion using
the symbol as specified by the SYMB operand. The format of the job
identification is as follows:

Byte Content
0-7 Job identification (JOBnnnn, STCnnnn, or TSUnnnn)
8 Blank
9-16 Job name
17 Blank

ÊÊ
symbol

$MSG id-value
,'message-text'

,SYMB=symbol-name

Ê

Ê
NO

,JOB= YES

ÊÍ

$MODULE

Chapter 3. JES2 Programmer Macros 205

Specifications for the JOB operand are as follows:

YES
The user places job information into the message text portion of the area
before executing a $WTO macro instruction.

NO (default)
The user does not place job information into the message area but can
require the $WTO macro instruction to extract job information from the job
control table and append the information to the console message buffer
copy of the message during $WTO macro execution time.

Environment
v Main task.
v $WAIT cannot occur.

$MVCL – Move More Than 256 Bytes of Storage
Use $MVCL to generate a MVC (move character) instruction when you need to
move more than 256 bytes of storage. Use this macro instruction in high
performance areas because multiple MVCs (as created by this macro) are faster
than using an MVCL instruction.

Format Description

TO=
Specifies an address or register containing the address of the area to which the
storage area is to be moved. Any register, except R0, can be specified. If TO=
specifies a value, that value is loaded into R14.

Note: If you do not code this keyword, the value currently in R14 is used.

FROM=
Specifies an address or register containing the address of the storage area to
be moved. Any register, except R0, can be specified. If FROM= specifies a
value, that value is loaded into R15.

Note: If you do not code this keyword, the value currently in R15 is used.

LENGTH=
Specifies the length (in bytes) of the storage area to be moved. If you do not
specify a value, 4K (4096) bytes will be moved. Any length up to a maximum of
4096 bytes can be specified. The value specified here must be a hard-coded
value.

ÊÊ
symbol

$MVCL
(R14)

TO= addrx
(Rn)

(R15)
,FROM= addrx

(Rn)

Ê

Ê
4096

,LENGTH= length

ÊÍ

$MSG

206 z/OS V1R4.0 JES2 Macros

Environment
v Main task, subtask, user, and functional subsystem (HASPFSSM).
v $WAIT cannot occur.

$NATGET – Locate an Element in the NAT
Use $NATGET to locate elements in the nodes attached table (NAT).

Format Description

NAT=
Specifies the address of a prototype NAT element that is to be located in the
NAT. The address of the real NAT element will be returned in register 1. This
parameter may not be specified with the NCC= parameter.

NCC=
Specifies the address of a prototype NCC record that is to be located in the
NAT. The address of the real NAT element will be returned in register 1. This
parameter may not be specified with the NAT= parameter.

QUEUE=
Specifies the queues upon which NAT elements may be found.

HELD
Specifies that the HELD queue is to be searched for the NAT element.

ACTIVE
Specifies that the ACTIVE (CONNECTED) queue is to be searched for the
NAT element.

INACTIVE
Specifies that the INACTIVE (UNCONNECTED) queue is to be searched
for the NAT element.

TOKEN=
Specifies the address of a token to be used when chaining through the NAT
elements for all connections for a particular node. On the first call to $NATGET,
the NAT=, and NCC=, or QUEUE= parameter should be specified with the
TOKEN= parameter, to get the address of the first NAT on the chain. On
subsequent calls, only the TOKEN= parameter needs to be specified.

RCABEND=
Specifies a label to which control should be passed if a NAT element could not
be found because of an ABEND in the $NATGET service.

ÊÊ
symbol

$NATGET
(R1)

,NAT= addr
,NCC= addr

(R1)

Ê

Ê
,QUEUE= HELD

ACTIVE
INACTIVE

(R0)
,TOKEN= addr

,RCABEND=label
Ê

Ê
,RCFOUND=label ,RCTOKERR=label ,RCNFOUND=label

Ê

Ê
,RCINPERR=label ,RCNATERR=label ,PATH=FAST

ÊÍ

$MVCL

Chapter 3. JES2 Programmer Macros 207

RCFOUND=
Specifies a label to which control should be passed if the NAT element was
successfully located in the NAT. The default is to pass control to the next
sequential instruction after the $NATGET.

RCTOKERR=
Specifies a label to which control should be passed if an error was detected in
the token passed on the TOKEN= parameter. The default is to pass control to
the next sequential instruction after $NATGET.

RCNFOUND=
Specifies a label to which control should be passed if a NAT element matching
the prototype could not be found, or if no more NAT elements matching the
prototype could be found if TOKEN= was specified. The default is to pass
control to the next sequential instruction after $NATGET.

RCINPERR=
Specifies a label to which control should be passed if a NAT element could not
be found because the input passed to the $NATGET routine was not valid. A
reason code will be passed back in register 0 indicating what error was
detected. The default is to pass control to the next sequential instruction after
$NATGET.

RCNATERR=
Specifies a label to which control should be passed if a NAT element could not
be found because there was an error in the NAT. The default is to pass control
to the next sequential instruction after $NATGET.

PATH=
Specifies that a “fast path” is to be taken through the $NATGET service routine.
This fast path call should be used only by main line path manager code, as it
bypasses certain error checking and does not set an $ESTAE. If $NATGET is
issued from an environment other than JES2 main task, PATH=FAST must be
specified.

Return Codes
0 Indicates that the NAT element was found.
4 Indicates that the value on the TOKEN= parameter was not valid.
8 Indicates that the NAT element was not found.
12 Indicates that an input error was detected. One of the following reason

codes will be returned in register 0:
0 NAT, NCC, or TOKEN address was required but was not specified.
4 Error in primary node specification.
8 Error in primary member specification.
12 Error in secondary node specification.
16 Error in secondary member specification.
28 Status error.

16 Indicates that an error was detected in the nodes attached table.
20 Indicates that the $NATGET service abended and recovered.

Environment
v JES2 main task or subtask.
v $WAIT cannot occur.

$NATGET

208 z/OS V1R4.0 JES2 Macros

$NHDADD – Adds an Installation-Defined Section to an NJE Data Area
Use the $NHDADD macro to add an installation-defined section to an NJE data
area. An NJE data area can be one of the following:
v NJE job header
v NJE data set header
v NJE job trailer

Format Description

HEADER=
Specifies the address of the NJE job header, NJE data set header, or NJE job
trailer to which the installation-defined section should be added. The
installation-defined section to be added to the NJE data area is defined by the
TYPE= and MOD= parameters. This is a required parameter.

TYPE=
Specifies the type NJE data area to which you want to add an
installation-defined section.

v NJHUTYPE if the installation-defined section is to be added to the job
header.

v NDHUTYPE if the installation-defined section is to be added to the data set
header.

v NJTUTYPE if the installation-defined section is to be added to the job trailer.

This is a required parameter.

FOUND=
Specifies the label where your routine should continue processing when the
installation-defined section you were attempting to add was already contained in
the NJE data area. If you do not provide an error routine when the
installation-defined section was already contained in the NJE data area, JES2
will continue to process the NJE job.

This is an optional parameter. If you do not specify this parameter and the
installation defined section already exists in the NJE data area, JES2 will
continue processing the NJE data area.

MOD=
Specifies the modifier of the installation-defined section you want to add to the
NJE data area.

v NJHUMOD if you are adding an installation-defined section to the NJE job
header.

v NDHUMOD if you are adding an installation-defined section to the NJE data
set header.

ÊÊ
symbol

$NHDADD HEADER= addrx
(Rn)

,TYPE= label
(Rn)

Ê

Ê ,LENGTH= label
(Rn) ,MOD= label

(Rn)
,FOUND= label

(Rn)

Ê

Ê
,NOSPACE= label

(Rn)
,ERRET= label

(Rn)

ÊÍ

$NHDADD

Chapter 3. JES2 Programmer Macros 209

v NJTUMOD if you are adding an installation-defined section to the NJE job
trailer.

This is an optional parameter.

LENGTH=
Specifies the length of the installation-defined section to be added to the NJE
data area.

This is a required parameter.

NOSPACE=
Specifies the label where your routine should continue processing when the
installation-defined section you were attempting to add caused the NJE data
area to exceed the maximum length. If you do not provide an error routine
when JES2 could not add the installation-defined section to the NJE data area,
JES2 will continue to process the NJE job.

This is an optional parameter. If you do not specify this parameter and the
installation-defined section caused the NJE data area to exceed the maximum
length, JES2 will not add the installation-defined section and will continue to
process the NJE data area.

ERRET=
Specifies the label or register that contains the address of an error routine that
receives control if JES2 could not locate the NJE data area specified by the
HEADER parameter. If you do not provide an error routine when JES2 cannot
locate the header, JES2 will continue to process the NJE job. JES2 returns one
of the following return codes in register 15. IBM suggests that you use the
NOSPACE, FOUND, and ERRET parameters if you are going to code routines
for the conditions indicated by the return codes.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Indicates the installation-defined section was added to the NJE data

area.
4 Indicates the installation-defined section was not added to the NJE

data area because it already existed. Ensure you have specified the
correct value for the TYPE= and MOD= parameters.

8 Indicates the installation-defined section was not added to the NJE
data area because it would make the header exceed the length of
the NJE data area.

12 Indicates the installation-defined section was not added to the NJE
data area because the address specified on the HEADER=
parameter was not valid.

$NHDEXP – Expand an NJE Data Area
Use the $NHDEXP macro to expand an installation-defined section to either the
NJE job header or NJE data set header.

$NHDADD

210 z/OS V1R4.0 JES2 Macros

Format Description

HEADER=
Specifies the address of the NJE job header, NJE data set header, or NJE job
trailer that needs to be expanded to contain additional information. Your
installation should be expanding only the installation-defined section of the NJE
data area. This is a required parameter.

TYPE=
Specifies the type of installation-defined section you want to expand. You can
obtain the value to specify for this parameter from one of the following:

v NJHUTYPE if the installation-defined section of the NJE job header needs to
be expanded.

v NDHUTYPE if the installation-defined section of the NJE data set header
needs to be expanded.

v NJTUTYPE if the installation-defined section of the NJE job trailer needs to
be expanded.

This is a required parameter.

MOD=
Specifies the modifier of the installation-defined section you want to expand.
This is an optional parameter.

LENGTH=
Specifies the length of the area you want to add to the NJE data area.

This is a required parameter.

NOSEC=
Specifies the label or register that should receive control if the
installation-specific section could not be expanded because it did not exist in
the NJE data area.

NOSPACE=
Specifies the label or register that should receive control if the
installation-specific section that you attempted to expand exceeded the
maximum size of the NJE data area.

This is an optional parameter if the ERRET= keyword is not specified.

ERRET=
Specifies the label or register that contains the address of an error routine that
receives control if an error occurs while expanding an NJE data area.

Return Codes
The following return codes (in decimal) are returned in register 15.

ÊÊ
symbol

$NHDEXP HEADER= addrx
(Rn)

,TYPE= label
(Rn)

Ê

Ê
,MOD= label

(Rn)
,LENGTH= label

(Rn)
,NOSEC= label

(Rn)

Ê

Ê
,NOSPACE= label

(Rn)
,ERRET= label

(Rn)

ÊÍ

$NHDEXP

Chapter 3. JES2 Programmer Macros 211

Return Code Description
0 Indicates the networking job header or networking data set header

was expanded to include the installation-defined section.
4 Indicates the NJE data area was not expanded because JES2

could not locate the installation-defined section.
8 Indicates the NJE data area was not expanded because if the

installation-defined section was added to the NJE data area it would
cause it to exceed the maximum length.

12 Indicates the NJE data area was not expanded because an invalid
NJE data area was specified.

$NHDGET – Get the Network Header Section
Use $NHDGET to search the network job header, job trailer, or data set header to
locate a specified section of a control block. If the control block section is located,
the address is returned in register 1. This address can then be used to access the
control block section if you need to modify that header or trailer information.

Format Description

HEADER=
Specifies the address of the control block within the section indicated by the
TYPE= keyword is to be located.

TYPE=
Specifies an 8-bit mask which indicates the type of section to be located. Valid
types and their corresponding masks are defined in the $NHD macro (the job
header DSECT). TYPE= can be specified as either a register whose low-order
byte contains the type mask, or TYPE= can be specified as a label that is
equated to a 1-byte mask.

MOD=
Specifies an 8-bit mask which indicates the value of the modifier field of the
control block section to be located. MOD= can be specified as either a register
whose low-order byte contains the type mask, or MOD= can be specified as a
label is equated to a 1-byte mask. The valid bit mask settings are also located
in the $NHD macro.

ERRET=
Specifies a label or register of an error routine which receives control if the
specified header type is not valid.

NOSEC=
Specifies a label or register of an error routine which receives control if the
specified header type is not found.

Notes:

1. Register 1 contains the address of the control block section if it is located.

2. Registers 0, 1, and 15 are used by this macro; do not use them.

ÊÊ
symbol

$NHDGET HEADER= addrx
(R1)

,TYPE= label
(Rn)

Ê

Ê
,MOD= label

(Rn)
,ERRET= label

(Rn)
,NOSEC= label

(Rn)

ÊÍ

$NHDEXP

212 z/OS V1R4.0 JES2 Macros

Environment
v All environments.
v $WAIT cannot occur.

$NHDREM – Removes an Installation-Defined Section from a NJE Data
Area

Use the $NHDREM to remove an installation-defined section from an NJE data
area. An NJE data area can be one of the following:
v NJE job header
v NJE data set header
v NJE job trailer

If your installation uses the $NHDADD macro to add any installation-defined
sections to any of the NJE data areas, you might need to issue a $NHDREM to
remove the installation-defined sections before transmitting the NJE job.

Format Description

HEADER=
Specifies the storage address of the NJE job header, NJE data set header, or
NJE job trailer from which the installation-defined section should be removed.
The section is identified by the TYPE= and MOD= parameters.

TYPE=
Specifies the type of NJE data area from which you want to remove the
installation-specific section. You can obtain the value for this parameter from
one of the following fields:

v NJHUTYPE if the installation-defined section is to be removed from the job
header.

v NDHUTYPE if the installation-defined section is to be removed from the data
set header.

v NJTUTYPE if the installation-defined section is to be removed from the job
trailer.

MOD=
Specifies the modifier associated with the installation-defined section to be
removed from the NJE data area. You can obtain the value for this parameter
from one of the following fields:

v NJHUMOD if the installation-defined section is to be removed from the job
header.

v NDHUMOD if the installation-defined section is to be removed from the data
set header.

v NJTUMOD if the installation-defined section is to be removed from the job
trailer.

ÊÊ
symbol

$NHDREM HEADER= addrx
(Rn)

,TYPE= label
(Rn)

Ê

Ê
,MOD= label

(Rn)
,NOSEC= label

(Rn)
,ERRET= label

(Rn)

ÊÍ

$NHDGET

Chapter 3. JES2 Programmer Macros 213

NOSEC=
Specifies the label or register that should receive control if the section specified
to be deleted is required by NJE protocols or JES2 could not locate the
specified section.

ERRET=
Specifies the label or register that contains the address of an error routine that
receives control if an error occurs because JES2 could not locate the NJE data
area specified by the HEADER parameter.

Return Codes
The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 JES2 removed the requested section from the NJE data area
4 JES2 did not remove the requested section from the NJE data area

because it could not locate the specified section or because NJE
protocols prohibit the section from being removed from the NJE
data area.

8 JES2 did not remove the requested section from the NJE data area
because it could not locate the NJE data area.

$NHDXMT – Transmitting an NJE Data Area Across the Network
Use $NHDXMT to transmit an NJE data area to another node in the network.

Format Description

HEADER=
Specifies the address of the buffer containing the NJE data area to be
transmitted. The HEADER= keyword is required.

DCT=
Specifies the address of the $DCT. The DCT= keyword is required.

JQE=
Specifies the address of the $JQE. The JQE= keyword is a required keyword.

JCT=
Specifies the address of the $JCT. The JCT= keyword is required.

ÊÊ
symbol

$NHDXMT HEADER= addrx
(Rn)

Ê

Ê ,HDRTYPE= NJH
NJT
NDH ,JOE= label ,PDDB= label

(Rn) (Rn)

,DCT= label
(Rn)

Ê

Ê
,JCT= label

(Rn)
,JQE= label

(Rn)
NO

,FREE= YES

Ê

Ê
NO

,EXIT= YES
,ERRET= label

(Rn)

ÊÍ

$NHDREM

214 z/OS V1R4.0 JES2 Macros

PDDB=
Specifies the address of the $PDDB that is associated with the SYSOUT data
set being transmitted. The PDDB= keyword is required when transmitting data
set header.

JOE=
Specifies the address of the $JOE that is associated with the SYSOUT data set
being transmitted. The JOE= keyword is required when transmitting data set
header.

FREE=
Specifies whether (YES) or not (NO) the buffer that contains the NJE data area
should be freed after it is transmitted. The default for the FREE parameter is
NO.

EXIT=
Specifies whether (YES) or not (NO) exit 46 should be invoked. The default is
NO. You should not specify YES on the EXIT= keyword if you are issuing the
$NHDXMT macro in exit 46.

HDRTYPE=
Specifies the type of NJE data area to be transmitted. You can specify one of
the following values:

Value Meaning
NJH Networking job header
NJT Networking job trailer
NDH Networking data set header

ERRET=
Specifies the label or register that contains the address of an error routine that
receives control if an error occurs while reading an NJE data area from spool.
JES2 indicates whether or not the NJE data area was successfully transmitted
by returning a return code in register 15.

Return Codes
The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 JES2 successfully transmitted the NJE data area to another node.
4 An error occurred while transmitting the NJE data area to another

node.

Environment
v JES2 Main task.

$PAIR – Define a Table Pair
Use $PAIR to define a table pair. See Appendix A for a detailed description of table
pairs.

$NHDXMT

Chapter 3. JES2 Programmer Macros 215

Format Description

FORM=
Indicates what of several forms of the table pair is being generated:

DSECT
Generates the DCs required for the DSECT mapping.

TABLE
Generates the DCs required for the DSECT mapping plus a WXTRN for
any user table entry.

IPCS
Generates the IPCS model that corresponds to the DSECT mapping.

MSG
Generates the special table pair form used by HASPMST, including the
$SCANTAB TABLE=HASP|USER. Only valid when TABLE=SCAN or
TABLE= (SCAN,VECTOR).

HASPENT=
Specifies a name that will override the default HASP table name of HASPxxxT.
A specification of NONE causes a zero value to be filled into the HASP table.
Not valid for FORM=MSG. When the HASP table is defined in this assembly
module, then the positional operand ADDR must be specified.

USERENT=
Specifies a name that will override the default user table name of USERxxxT. A
specification of NONE causes a zero value to be filled into the USER table. It
also causes dynamic tables to be disallowed for this table pair. Not valid for
FORM=MSG. When the USER table is defined in this assembly module, then
the positional operand ADDR must be specified.

COMMENT=
Specifies a comment that is to be placed on the table pair in the macro
expansion.

TABLE=
Specifies the type of table that this table pair will point to. A second positional
entry of VECTOR indicates that a special VECTOR SCANTAB entry is to be
produced, which consists of only a HASP table (no USER or DYNAMIC
entries).

ÊÊ
label

$PAIR FORM= TABLE
DSECT
MSG
IPCS

HASPENT= (name,ADDR)
NONE

USERENT= (name,ADDR)
NONE

COMMENT= ’comment text’

Ê

Ê TABLE= SCAN
(SCAN,VECTOR)
WST
BERT
PCE
DCT
DTE
TID
PCR
xxxxxxxx

ÊÍ

$PAIR

216 z/OS V1R4.0 JES2 Macros

TABLE=SCAN - $SCANTAB
TABLE=(SCAN,VECTOR) - $SCANTAB VECTOR
TABLE=WST - $WSTAB
TABLE=BERT - $BERTTAB
TABLE=PCE - $PCETAB
TABLE=DTE - $DTETAB
TABLE=DCT - $DCTTAB
TABLE=TID - $TIDTAB

Environment
v Main task.
v $WAIT can occur.

$PATCHSP – Generate Patch Space
Use $PATCHSP to cause a specified number of bytes of patch space to be
generated. This patch space is divided into halfwords and listed in the assembly in
such a way that both the assembly location (for REP and AMASPZAP patch
statements) and the base displacement (in the form BDDD) are printed for each
halfword.

Format Description

length
Specifies the length of the patch space in bytes.

DSECT=
Specifies how the specified patch space will be generated.

YES
Indicates that the specified patch space is generated with all binary zeroes.

NO
Indicates that the specified patch space is generated with halfwords of
S-type ADCONS (that is, S(*)).

CAUTION:

Local addressability is required for this macro instruction to assemble
correctly.

Environment
v Main task, subtask, user address space, or functional subsystem (HASPFSSM).
v MVS WAIT and $WAIT are not applicable.

$PBLOCK – Block Letter Services
Use $PBLOCK to create block letters from the job name in the job control table
(JCT), and from the job type and job number in the processor control element
(PCE).

ÊÊ
symbol

$PATCHSP length-number
NO

,DSECT= YES

ÊÍ

$PAIR

Chapter 3. JES2 Programmer Macros 217

In an installation exit routine (for example, exits 1 and 15) associated with the
separator page JES2 exit point in the HASPPRPU module, use $PBLOCK to create
block letters from 1 to 8 characters as specified in the DATA= parameter.

Format Description

DATA=
Specifies a register or name of a field containing the address, in register format,
of the data to be used to create the block letters. The length of the data must
be no greater than 8 characters. If you specify less than 8 characters, this field
must include trailing blanks; this macro always ends its scan for characters after
getting 8 characters.

BUFFER=
Specifies a register or name of a field containing the address of a HASP output
buffer. This buffer area is the I/o data area; therefore, if $GETBUF is used to
obtain this area, be certain to add FIX=YES to that macro statement.

SLANT=
Specifies whether the block letters should be slanted as follows:

YES
The job name and number are to be slanted.

NO (default)
Everything is to remain unslanted.

CENTER=
Specifies how the separator page block letters are placed on the page as
follows:

YES (default)
The block letters are to be centered. However, if the field containing the
character string is filled with trailing zeroes rather than blanks, the block
letters will not be centered.

NO
The block letters are to be left-justified.

Environment
v Main task.
v $WAIT can occur.

$PCEDYN – Attach or Delete a JES2 PCE
This macro provides the interface to those services that perform all generating
(ATTACHing) and deletion (DETACHing) of JES2 processors (PCEs).

ÊÊ
symbol

$PBLOCK DATA= addrx
(R0)

,BUFFER addrx
(R1)

Ê

Ê
NO

,SLANT= YES
YES

,CENTER= NO

ÊÍ

$PBLOCK

218 z/OS V1R4.0 JES2 Macros

Format Description

action
Specifies the type of action requested.

ATTACH
Generate a new PCE(s). These PCEs are dispatched based on the
DISPTCH keyword on the associated $PCETAB entries.

DETACH
Dequeue and delete a PCE(s).

DETACHTEST
Determine if a PCE(s) can be detached now.

PCE=
Specifies the address of a PCE. This address can be either a register (1-12) or
the name of a field containing the PCE address. R1 is loaded with the value.

If Action is:
This keyword indicates:

ATTACH
Specifies an existing PCE of a PCE type (PCEID value) for which
another PCE (1) will be generated.

DETACH
Specifies a PCE to detach.

DETACHTEST
Specifies to test a PCE and determine if this PCE can be deleted (that
is, determine if any resources are still outstanding).

PCETAB=
Specifies the address of a PCE table entry for a PCE type. This address can be
either a register (1-12) or the name of a field containing the entry address.

If Action is:
This keyword indicates:

ATTACH
Specifies a table entry for a PCE type that is not one-to-one with a DCT
type. A PCE of this type is to be generated.

DETACH
PCETAB= cannot be specified for DETACH. $PCEDYN cannot detach
an arbitrary PCE of a PCE type.

DETACHTEST
PCETAB= cannot be specified for DETACH. $PCEDYN cannot detach
an arbitrary PCE of a PCE type.

ÊÊ
label

$PCEDYN action ,PCE addrx
(R1)

,PCETAB addrx
(R1)

,DCT= addrx
((R1) ,label)

Ê

Ê
,ERRET= label

(Rx)

ÊÍ

$PCEDYN

Chapter 3. JES2 Programmer Macros 219

DCT=
Specifies the address of a device control table (DCT). This address can be
either a register (1-12) or the name of a field containing the DCT address. R1 is
loaded with the value.

Also, to indicate a DCT chain field that should be used to attach or detach
PCEs for the DCT chain starting with the DCT specified, use a second
positional parameter. When a DCT chain is to be processed, $PCEDYN will
attach or detach PCEs, connect or disconnect DCTs and their ‘managing’ PCEs,
or do nothing as indicated by the associated DCT and PCE table entries (for
example, a DCT not owned or managed by a specific processor).

Notes:

1. If a DCT chain is specified, no PCE is attached for DCTs for which DCTPCE
is already nonzero.

2. If any PCE ATTACH fails for a DCT in the chain, the entire DCT chain is
processed as if DETACH had been requested.

ERRET=
Defines an error routine location (label or register) to branch to if R15 is not
zero on return from ATTACH.

CAUTION:

Before using this macro, it may be useful to review the table structures
involved, that is, the PCE table and the DCT table in HASPTABS (macros
$PCETAB and $DCTTAB). Also, the mapping macros for the PCE ($PCE) and
DCT ($DCT) provide further understanding of these control blocks.

Environment
v JES2 Main task.
v $WAITs cannot occur.

$PCETAB – Generate or Map PCE Table Entries
Use $PCETAB to map and generate PCE table entries.

$PCETAB entries are used to define the start of a user table ($PCETAB
TABLE=USER...) or a JES2 table ($PCETAB TABLE=HASP...), the end of a table
($PCETAB TABLE=END) or an entry in a table ($PCETAB NAME=ZOOT...).

Note: The format description that follows breaks the macro into a boundary form
(the form that starts or ends a table) and an entry form (the form that
defines each table entry).

Format Description

Boundary Form

ÊÊ
symbol

$PCETAB TABLE= HASP
(,NOENTRY)

USER
(,NOENTRY)

DYNAMIC
END

ÊÍ

$PCEDYN

220 z/OS V1R4.0 JES2 Macros

Entry Form

TABLE=
Specifies the first entry in the HASP or user PCE table. If TABLE= is specified,
all other operands are ignored. TABLE=END specifies the end of a PCE table;
this must be coded at the end of all PCE tables.

HASP
Specifies the first entry in a HASP table.

USER
Specifies the first entry in a user PCE table.

(USER,NOENTRY)
Specifies that the ENTRY statement normally generated for the user PCE
table is suppressed.

DYNAMIC
Specifies that this is a dynamic PCE table.

END
Specifies the end of the defined USER or HASP table.

ÊÊ
symbol

$PCETAB NAME=name
,CHAIN= field

(,HCT)
,UCT

Ê

Ê
,COUNTS= field

(,CB)
,DCTTAB=dct-label

Ê

Ê
,DESC=char-string WARM

,DISPATCH= INIT
WORK

NO
,DYNDETACH= YES

Ê

Ê
,ENTRYPT= field

(,MODMAP)
,UCT

NO
,FSS= YES

Ê

Ê
INIT

,GEN= DYNAMIC
STATIC

,MACRO=macro-name ,MONITOR= JOBID
JQEINDEX
NONE

Ê

Ê
,PCEID= value

(val1,val2)
0

,PCEFLGS= flgs-value

Ê

Ê
,WARMLOCK= YES

NO
NO

,WAVE= YES

Ê

Ê
0

,WORKLEN= nnn
,XWTR= YES

NO

ÊÍ

$PCETAB

Chapter 3. JES2 Programmer Macros 221

NAME=
Specifies a 1- to 8-character name for the PCE type.

CHAIN=
Specifies the name of a fullword field that can be used to point to the first PCE
of this type within the entire PCE chain that is anchored in $PCEORG in the
PCE. The $PCEDYN service maintains this field.

field
Specifies an HCT field.

(field,HCT)
Explicitly specifies an HCT field.

(field,UCT)
Explicitly specifies a UCT field.

COUNTS=
Specifies the name of a fullword field that contains two halfword counts for this
PCE type. The first count is the count of defined PCEs, and must be set during
JES2 initialization (before invoking Exit 24). The second count is the count of
allocated PCEs; this count is maintained by the $PCEDYN service.

field
Specifies the name of the field used by this keyword.

field,HCT
Explicitly specifies an HCT field.

field,UCT
Explicitly specifies a UCT field.

DCTTAB=
Specifies the label provided on the DCT table entry that corresponds to the
DCTs that have a one to one correspondence with the PCE type (if any).

DESC=
Specifies a 1- to 32-character description of the PCE type. The word processor
is appended to the end of this description.

DISPTCH=
Specifies the initial dispatching status for PCEs of this type once they are
created.

WARM
Specifies that PCEs are dispatched immediately if initialization and
warm-start processing have completed, otherwise, the PCEs are $WAITed
on HOLD. At the end of warm-start processing, all PCEs are POSTed for
HOLD.

INIT
Specifies that PCEs are made ready immediately then dispatched at the
completion of initialization processing (at the same time that warm start
processing begins).

WORK
Specifies that PCEs are $WAITed on work until $POSTed by later
processing.

DYNDETACH=
Specifies whether (YES) or not (NO) this PCE can be deleted through a
$PCEDYN service call. DYNDETACH=YES is only meaningful on a $PCETAB
GEN=INIT call.

$PCETAB

222 z/OS V1R4.0 JES2 Macros

ENTRYPT=
Specifies the name of a fullword field containing the processor entry point
address.

field
Specifies a MODMAP field if this is a HASP table or a UCT field if this is a
user table.

(field,MODMAP)
Explicitly specifies a MODMAP field.

(field,UCT)
Explicitly specifies a UCT field.

FSS=
Specifies whether this PCE type is permitted (YES) or not (NO) to run in
functional subsystem (FSS) mode. If FSS=YES is specified, then the larger of
the JES2-mode PCE work area or the FSS-mode work area is used. The
default is NO.

GEN=
Specifies when this specific PCE type is to be generated by the $PCEDYN
macro.

INIT
Specifies that PCEs are to be generated during JES2 initialization
processing (that is, after most initialization, but before calling Exit 24).

DYNAMIC
Specifies that PCEs are to be generated by using the $PCEDYN service
after initialization.

STATIC
Specifies that this type PCE should not be generated.

Note: This specification is only used for the HASP initialization PCE.

MACRO=
Specifies a 1- to 8-character macro name for the macro that maps the PCE
work area for this PCE type. This keyword is for documentation only.

MONITOR=
Specifies whether to set the JOBID, JQEINDEX or nothing for the JES2
monitor. Controls what is set in PCEJOBID or PCEJQEIX.

PCEFLGS=
Specifies the flags to place in the PCEFLAGS field during initialization. The flag
values are defined with the PCEFLAGS field in the PCE mapping macro. The
default is 0.

PCEID=
Specifies the values for the PCEID field. The second byte of the PCEID in user
table entries should start at 255 and decrease. The two-byte PCEID must
uniquely define a PCE type.

value
Specifies the PCEID as the 2-byte value defined by a DC of AL1(0,value).

(val1,val2)
Specifies the PCEID as the 2-byte value defined by a DC of AL1(val1,val2).

$PCETAB

Chapter 3. JES2 Programmer Macros 223

|
|
|

WARMLOCK=
Specifies whether or not this PCE type is allowed to obtain a JQE warm start
lock.

WAVE=
Specifies whether or not to obtain a work access verification element (WAVE)
during processor initialization. JES2 places the address of the WAVE in the
PCEWAVE field. The default for WAVE= is NO.

WORKLEN=
Specifies the length of the PCE work area for this PCE type. This value defaults
to 0, and is typically specified using an equate in a PCE work area mapping
macro.

XWTR=
Specifies whether or not this PCE type is a PCE that services PSO or SAPI
external applications.

Environment
v $WAIT is not applicable – this macro generates a DSECT or a static table entry;

it does not generate executable code.

$PCETERM – Processor Control Element (PCE) Termination
Use $PCETERM to allow a PCE to $WAIT on the PCETM resource queue until the
MISC processor detaches the PCE. This will cause the PCE that issues the macro
to be terminated. If the PCE is mistakenly $POSTed, the macro will reissue the
$WAIT PCETM until the PCE is detached.

Note: Control is never returned to the caller from this macro.

Format Description

Environment
v JES2 main task.
v $WAIT until PCE detached.

$PDBBLD – Build a Peripheral Data Definition Block (PDDB)
Use $PDBBLD to build a peripheral data definition block (PDDB). $PDBBLD obtains
a PDDB slot in the input/output table (IOT) and initializes it. If the specified IOT is
not large enough to contain the new PDDB, $PDBBLD obtains an additional IOT.
On return to the caller, the address of the PDDB is in R1.

ÊÊ
symbol

$PCETERM ÊÍ

$PCETAB

224 z/OS V1R4.0 JES2 Macros

|
|
|

|
|
|

Format Description

IOT=
Specifies a label or register that contains the address of the input/output table
(IOT)

PRIMIOT=
Specifies a label or a register that contains the address of the primary allocation
IOT that is used if TYPE=SPIN or if an additional PDDB IOT is required.

TYPE=
Specifies the type of PDDB to be built.

PDDB
Indicates a request for a PDDB (in the specified IOT). If the IOT is not
sufficiently large to contain the new PDDB, a new IOT is also created. This
is the default.

SPIN
Indicates a request to create a SPIN IOT.

ERRET=
Specifies a label or a register that contains the address of the routine that is to
receive control if $PDBBLD does not successfully complete processing.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 PDDB successfully obtained; register 1 contains the address of the

PDDB.
4 PDDB not obtained; GETMAIN for IOT failed.

Environment
v User address space.
v MVS WAIT can occur.

$PDBFIND – Locate a Peripheral Data Definition Block (PDDB)
Use $PDBFIND to locate a peripheral data definition block (PDDB). $PDBFIND
locates a PDDB using the data set key you provide as a search argument.

ÊÊ
symbol

$PDBBLD IOT= label
(Rn)

,PRIMIOT= label
(Rn)

PDDB
,TYPE= SPIN Ê

Ê
,ERRET= label

(Rn)

ÊÍ

$PDBBLD

Chapter 3. JES2 Programmer Macros 225

Format Description

IOT=
Specifies the label or a register that contains the address of the input/output
table (IOT). If a register is specified, the address of the IOT must be loaded into
the designated register before the execution of this macro instruction.

DSKEY=
Specifies the label, or a register that contains the address, of the 2-byte data
set key (from the data set name) search argument. If a register is specified, the
address of the data set key must be loaded into the designated register before
the execution of this macro instruction.

ERRET=
Specifies a label or a register that contains the address of the routine that
receives control if $PDBFIND does not successfully complete processing.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 PDDB found. Register 1 contains the address of the PDDB.
4 PDDB not found

Environment
v All environments.
v MVS WAIT and $WAIT cannot occur.

$PGSRVC – Perform a Virtual Page Service
Use $PGSRVC to page-fix, page-free, or page-release an area of JES2 storage
through a branch entry to the MVS virtual storage manager. The $PGSRVC macro
calls the $PGSRVC routine in HASPNUC to issue the appropriate MVS PGSERV
macro.

Format Description

type-code
Specifies the type of function to be performed:

ÊÊ
symbol

$PDBFIND IOT= label
(Rn)

,DSKEY= label
(Rn)

Ê

Ê
,ERRET= label

(Rn)

ÊÍ

ÊÊ
symbol

$PGSRVC type-code , area-addrx
(R1)

, length-addrx
PSL
(R0)

Ê

Ê
N

,RELEASE= Y

ÊÍ

$PDBFIND

226 z/OS V1R4.0 JES2 Macros

FIX
Page-fix a JES2 storage area

FREE
Page-free a previously fixed JES2 storage area

PROTECT
Specifies that a range of virtual storage be made read-only.

RLSE
Page-release a JES2 storage area

UNPROTECT
Specifies that a range of virtual storage be made modifiable.

UNPROTECT is mutually exclusive with RELEASE=.

area
Specifies the starting address of the area of storage or of the PSL (page
service list). If an address is specified, it must be the address of a word in
storage containing the address of the area. If register notation is used, the area
address must be loaded into the designated register before the execution of this
macro instruction.

length|PSL
Specifies the length, in bytes, of the storage area. If an address is used, it
specifies a word in storage containing the area length. If register notation is
used, the area length must be loaded into the designated register before
execution of this macro instruction.

PSL specifies that a page service list (PSL) is used to pass the addresses of
multiple storage areas to the calling routine. If PSL is specified, the second
positional operand, area, on this macro instruction contains the address of the
PSL. This allows a range of addresses to be passed to MVS. Refer to z/OS
MVS Programming: Authorized Assembler Services Guide for information on
building a PSL.

RELEASE=
Specifies whether the storage is released or not during a fix or free operation.
Use this parameter to prevent unnecessary page-ins and page-outs.

Y Indicates that the storage is released before fixing or freeing. Only specify
YES if you have no need for the current storage contents.

N Indicates that the storage is not released before fixing or freeing.

RELEASE= is mutually exclusive with UNPROTECT=.

Notes:

1. Paging is done synchronously; that is, on return from $PGSRVC the paging
action is complete, and no other JES2 processor receives control during this
processing.

2. For page-free requests, the page is made pageable only when the number of
page-free requests specifying the page equals the number of page-fix requests
for the page. If the designated area is not page-fixed, the area is unaffected by
the execution of this macro instruction.

3. For page-release operations, if the area does not encompass one or more
complete pages, the area is unaffected by the execution of this macro
instruction.

4. Register 15 is used to pass control to the specified service routine.

$PGSRVC

Chapter 3. JES2 Programmer Macros 227

5. Refer to z/OS MVS Programming: Authorized Assembler Services Guide for
further information concerning virtual page services.

Environment
v Main task or during JES2 initialization and termination.
v $WAIT cannot occur.

$POST – Post a JES2 Event Complete
Use $POST to indicate that one or more JES2 resources should be posted by
turning off specified inhibitors in the $HASPECF field of the HASP communications
table (HCT). Use $POST also to post a specific PCE that a JES2 event has
occurred; if all inhibitors are reset by the action, the PCE is requeued to the JES2
dispatcher’s $READY queue. Inhibitors turned off in the $HASPECF field cause
requeuing of all PCEs on the resource wait queues by the dispatcher.

Format Description

pce
Specifies the specific processor control element (PCE) that is to be posted or
specifies that the $HASPECF field within the HASP communication table (HCT)
is to be posted. If register 1 is used, register 1 must refer to a PCE and must
be loaded with the address of the PCE before executing the macro instruction.
This is a positional operand and must be specified first.

event/resource
Specifies one or more events/resources that are to be posted. You can specify
multiple events or resources, but not a combination of events and resources on
a single $POST macro call. This operand must be consistent with the allowable
events acceptable for the first operand as follows.

v If PCE was specified, the following JES2 events can be specified:

Event

null
The specified PCE is made ready for dispatching if it has no wait flags
on (a $WAIT with INHIBIT=NO is issued).

FORCE
The specified PCE is made ready for dispatching regardless of its wait
flags.

HOLD
An operator has entered a $S command.

ÊÊ
symbol

$POST pce-addrx
(R1)
$HASPECF

Ê

Ê , event
(,event,...)

, resource
(,resource,...)

SET
,TYPE= RESET

TEST
EOM

Ê

Ê
NO

,MASPOST= YES

ÊÍ

$PGSRVC

228 z/OS V1R4.0 JES2 Macros

IO An input/output operation has completed (logically).

OPER
An operator has started a processor. (There are no posts ($POST) with
OPER in the distributed system.)

POST
An MVS POST of an ECB has been performed.

WORK
Work is available for the specified processor.

v If $HASPECF was specified, the following JES2 resource can be specified:

Resource

ABIT
Waiting for the next dispatcher cycle.

ALICE
PCEs waiting for incomplete warm start.

ALOC
A dynamic allocation has completed.

ARMS
Automatic restart manager support services.

BERTL
Waiting for a BERT lock to free.

BERTW
Waiting for a free BERT.

BREG
PCEs waiting for WLM registration requests.

BUF
A JES2 buffer has been released.

CCAN
Cancel JOB/TSU/STC in conversion.

CKPT
A JES2 checkpoint write has completed.

CKPTL
Lurking for CKPT READ.

CKPTP
A checkpoint cycle has completed.

CKPTW
A JES2 checkpoint should be written.

CMB
A console message buffer has been released.

CNVT
A converter has been released.

DILBERT
Waiting for $DILBERT requests.

FSS
A functional subsystem has completed FSS-level processing.

$POST

Chapter 3. JES2 Programmer Macros 229

GENL
Provides a method of communication from one processor control element
(PCE) to another. It does not provide serialization between the PCEs.
You must ensure the condition of the waiting PCE is satisfied before it is
posted. Frequent use of the GENL resource name will have a severe
impact on your installation’s performance.

HOMOG
PCEs waiting for JESplex version change.

HOPE
An output processor has been released.

IMAGE
A UCS or FCB image has been loaded.

JCMD
A JES2 job queue element has been marked for cancel ($C) or restart
($E) processing.

JOE
A JOE has been released.

JOT
A JES2 job output element has changed status.

JOB
A JES2 job queue element has changed status.

LOCK
A lock has been released.

MAIN
Storage is available.

MLLM
Line manager resource $POSTs.

MFMT
PCEs waiting for SPOOL mini-format conversion.

NEWS
PCE waiting for a JNEW update (part of JESNEWS process).

PCETM
Waiting for resource manager to detach PCE.

PSO
A process SYSOUT request has been queued for the JES2 PSO
processor(s).

PURGE
A JES2 job queue element (JQE) has been placed on the purge queue.

PURGS
Purge resources from $PURGER have been released.

RMWT
Resource manager has finished work.

RSV
A JES2 RESERVE has been satisfied.

SMF
AN SMF buffer has been released.

$POST

230 z/OS V1R4.0 JES2 Macros

SPI
PCEs waiting for SYSOUT API requests.

SPIN
A spin data set has been created.

STAC
STATUS/CANCEL resource type.

TRACK
A track group from the JES2 spooling data set has been released.

UNIT
A device control table has been released.

WARM
A member of the MAS needs to be warm-started.

WSLOK
Warm start lock.

XMITJOB
A JES2 job queue element (JQE) has been placed on the XMIT queue to
be transmitted to another node.

TYPE=
Specifies the type of action for a $POST of a resource. This keyword is ignored
for PCE $POSTs of events, FORCE, or null. JES2 returns a nonzero condition
code if the resource/event is POSTed, or a condition code of 0 if it is not
POSTed.

SET
Indicates that the resource should be POSTed (that is, the resource flag(s)
set on).

RESET
Indicates that the resource should be unPOSTed (that is, the resource
flag(s) set off).

TEST
Indicates that the resource should be tested to determined if it was
$POSTed. TYPE=TEST and MASPOST= are mutually exclusive.

EOM
Post PCEs waiting for End Of Memory events.

MASPOST=
Specifies whether (YES) or not (NO) the resource $POST is to be propagated
to all members of the multi-access spool complex. This keyword is only valid for
resources within the JES2 main task, for example, JOB, CNVT, SPIN, HOPE,
PURGE, JOE, etc. MASPOST= and TYPE=TEST are mutually exclusive.

Environment
v Main task.
v $WAIT cannot occur.

$POSTQ – Quick Post Facility
Use the $POSTQ macro to quick post an ECB (event control block). This macro
produces the necessary inline code to either quick post (that is, bypass the POST
routine) an ECB and/or issue an MVS POST if the specified ECB is currently
waiting on an event.

$POST

Chapter 3. JES2 Programmer Macros 231

|
|

Format Description

ECB=
Specifies the address of the ECB to be quick posted. If the ECB is currently
waiting and you also specify SVC=YES on this macro, JES2 then requests that
an MVS POST of the ECB be issued. If this keyword is not specified, an
assembly error will occur.

CODE=
Specifies a 30-bit post code to be quick posted into the ECB. The default is 0.

SVC=
Specifies whether (YES) or not (NO) an MVS POST should be issued if the
ECB is currently waiting (that is, the ECB wait bit is on). If SVC=NO is
specified, no MVS POST is issued and a condition code is returned to the caller
to signify whether the quick post was successful (CC=0) or unsuccessful
(CC=1). The default is YES.

SVC= supports the new SYSTEM value. SVC=SYSTEM generates an MVS
POST with LINKAGE=SYSTEM. SVC=YES generates an MVS POST with no
other operands.

Environment
v JES2 main task, subtask, user address space, and HASPFSSM address space.
v $WAIT cannot occur.

$POSTXEQ – Post the JES2 Execution Processor
Use $POSTXEQ to indicate to the JES2 execution processor that jobs are now
available for selection by an initiator.

Format Description

MASPOST=
Specifies whether (YES) or not (NO) the execution processor is to be posted on
all members of the multi-access spool (MAS) complex.

Environment
v Main task.
v $WAIT cannot occur.

ÊÊ
symbol

$POSTQ ECB= label
(R0) 0

,CODE= absexp

Ê

Ê
YES

,SVC= NO
SYSTEM

ÊÍ

ÊÊ
symbol

$POSTXEQ
NO

,MASPOST= YES

ÊÍ

$POSTQ

232 z/OS V1R4.0 JES2 Macros

$PRPUT – Create Separator Pages
Use $PRPUT to create user-defined separator page(s). The created separator page
can replace or add to the standard separator page. The separator page JES2 Exit 1
is in module HASPPRPU.

Format Description

DATA=
Specifies the actual address of the data to be printed or punched. The address
of this data must not be a 31-bit address. If you do specify a 31-bit address,
unpredictable results may occur. The data pointed to by this register must be a
fixed-data field because this data area is the I/O data area. Therefore, if
$GETBUF is used to obtain this area, be certain to add FIX=YES to that macro
statement.

LEN=
Specifies the actual length of the fixed-data field, including any carriage control
and 3800 table reference characters (TRC) if present.

COUNT=
Specifies the number of times the data is to be produced. Default is no
repetitions.

WAIT=
Specifies whether to wait until I/O has completed as follows:

YES
Wait for I/O completion.

NO (default)
Do not wait for I/O to complete.

CC=M
Specifies that an installation-specified machine carriage control is required. The
carriage control characters are defined as hexadecimal values. For the
device-dependent printer control commands, refer to the “Commands” section of
the manual of the printer on which you are printing your output. If this keyword
is omitted, no carriage control is assumed.

OPTCD=J
Specifies that the 3800 table reference character (TRC) is present in the data. If
this parameter is omitted, 3800 TRC is not assumed to be present.

Return Codes
The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 Successful creation of the separator page
4 Creation of the separator page was suspended or terminated.

ÊÊ
symbol

$PRPUT DATA= addrx
(R1)

,LEN= addrx
(R0)

Ê

Ê
1

,COUNT= absval
NO

,WAIT= YES
,CC=M ,OPTCD=J

ÊÍ

$PRPUT

Chapter 3. JES2 Programmer Macros 233

Environment
v Main task.
v $WAIT can occur if WAIT=YES is specified.

$PURGE – Return Direct-Access Space
Use $PURGE to return the direct-access space that was allocated for a given job or
data set.

Format Description

IOT=
Specifies the address of the primary allocation IOT from which track group
allocation elements (TGAEs) are to be returned. Secondary allocation IOTs, if
any exist, are also processed.

JQE=
Specifies the address of a JQE. The job-key field of the JQE must match the
job-key field of the specified IOT. Use of the JQE parameter causes JES2 to
perform additional validation to ensures that the space returned belongs to the
job identified in the JQE.

v If the job-key fields match and the IOT Parameter points to an IOT, JES
returns the allocated space to the system.

v If the job-key fields do not match, JES does not return the allocated space
and issues a $DISTERR macro.

VERIFY=YES | NO
Specifies whether to call SAF for authorization before continuing the purge
process. Use VERIFY=NO when purging buffers which do not have a profile
name SAF can use to verify access authority.

Environment
v Main task.
v $WAIT can occur.

$PUTABLE – Add Hasp/User Table Entry
Use $PUTABLE to add a table to a MCT table pair. See Appendix A for a detailed
description of table pairs.

ÊÊ
symbol

$PURGE IOT=iot-addrx
,JQE=jqe-addrx

Ê

Ê
YES

,VERIFY= NO

ÊÍ

$PRPUT

234 z/OS V1R4.0 JES2 Macros

Format Description

TABLE=
Specifies the table pair to be accessed.

TABLE=SCAN - $SCANTAB
TABLE=WST - $WSTAB
TABLE=BERT - $BERTTAB
TABLE=PCE - $PCETAB
TABLE=DTE - $DTETAB
TABLE=DCT - $DCTTAB
TABLE=TID - $TIDTAB
TABLE=PCR - $PCTAB

ADDR=
Specifies the address of the table to be linked in.

$PAIR=
Specifies the specific offset and control block of the table pair to which the
dynamic table should be chained

ERRET=
The address to go to if the table could not be added.

OKRET=
The address to go to if the table is successfully added.

Return Codes
The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 Requested table entry was found.
4 Requested table entry was not found or end-of-table.

Environment
v Main task

$QADD – Add Job Queue Element to the JES2 Job Queue
Use $QADD to add an element to the JES2 job queue, placing it in the specified
logical queue. The address of the job queue element where the element image has
been placed is returned in register 1 if the element is successfully added.

ÊÊ
label

$PUTABLE TABLE= SCAN
WST
BERT
PCE
DCT
DTE
TID
PCR

ADDR = addr $PAIR = value Ê

Ê ERRET= addr
OKRET= addr

ÊÍ

$PUTABLE

Chapter 3. JES2 Programmer Macros 235

Format Description

element
Specifies the address of an element image which is to be added to the JES2
job queue. If register notation is used, the address must be loaded into the
designated register before the execution of this macro instruction.

queue
Specifies the logical queue in which the job queue element is to be placed. This
value must always be one of the eight logical queue types. If register notation is
used, one of these values must be loaded into the designated register before
the execution of this macro instruction.

The queue type specifications may be ignored if the job queue element has
been flagged for cancellation. The resulting logical queue is as follows:

v JQE1OCAN bit on and JQE1PURG bit off. Any $QADD with a $XEQ or
$XMIT specification is altered to $OUTPUT.

v JQE1OCAN bit off and JQE1PURG bit on. Any $QADD with JQEJOECT and
JQEHLDCT fields 0 is altered to $PURGE. Any $QADD with a JQEJOECT or
JQEHLDCT field nonzero is altered to $HARDCPY.

full
Specifies a location to which control is returned if the JES2 job queue is full. If
this operand is omitted, the condition code is set to reflect the status of the
JES2 job queue as follows:

CC=0
The queue is full and the element cannot be accepted.

CC≠0
The element was successfully added to the queue.

Environment
v Main task.
v $WAIT can occur.

$QBUSY – Set or Test the Busy System Indicator of a JQE
Use $QBUSY to set or test the busy system indicator for a job queue element
(JQE).

ÊÊ
symbol

$QADD element-addrx
(R1)

, queue-value
(R0) ,full relexp

ÊÍ

$QADD

236 z/OS V1R4.0 JES2 Macros

Format Description

JQE=
Specifies the address of the JQE whose busy indicator is to be set, reset, or
tested. If you use register notation, provide the address of the JQE in the
specified register. If you specify a label, that label is the address of the JQE.
(For example, you can specify JQE=JQE if you set a base register for the JQE
DSECT.)

ACTION=
Specifies whether the busy indicator for this JQE is to be set on (ON) or turned
off (OFF).

ON
Indicates this member is processing this element.

OFF
Indicates that this element is not being processed by any members.

(TEST,ANY)
Indicates that the JQE should be tested to determine if the JQE is busy on
any member of the MAS.

(TEST,LOCAL)
Indicates that the JQE should be tested to determine if the JQE is busy on
this member of the MAS.

(TEST,field)
Indicates that the JQE should be tested to determine if the JQE is busy on
the member of the MAS whose member number is specified in the
indicated 1-byte field.

(TEST,(Rn))
Indicates that the JQE should be tested to determine if the JQE is busy on
the member of the MAS whose member number is specified in the
indicated register.

Note: Whenever setting ACTION=(TEST,...), you must also specify either
BUSY= or NOTBUSY= to indicate to JES2 where it should branch
based on the test result.

CAT=
Specifies the address of the update mode CAT. If the caller has an update
mode CAT associated with the class the job is currently active in, the address
must be passed to $QBUSY.

ÊÊ
symbol

$QBUSY JQE= (Rn)
label

,ACTION= ON
OFF
(TEST,ANY)
(TEST,LOCAL)
(TEST,field)
(TEST, (Rn))

Ê

Ê
,CAT=address NO

,SETDEVID= YES
,BUSY= label

(Rn)

Ê

Ê
,NOTBUSY= label

(Rn)
YES

,REAL= NO
YES

,TRACE= NO

ÊÍ

$QBUSY

Chapter 3. JES2 Programmer Macros 237

SETDEVID=YES|NO
Specifies whether (YES) or not (NO) the device id in the JQE is to be set.
SETDEVID=NO is the default.

BUSY=
Specifies a label or register to which to branch if the JQE is busy on the
particular member of the MAS.

BUSY= is only valid if you also specify ACTION=(TEST,...).

NOTBUSY=
Specifies a label or register to which to branch if the JQE is not busy on the
particular member of the MAS.

BUSY= is only valid if you also specify ACTION=(TEST,...).

REAL=
Specifies whether this JQE is a ‘real’ JQE within the JES2 checkpoint data set
(YES) or a prototype JQE in a work area (NO). If REAL=YES, JES2 validates
the JQE.

TRACE=YES and REAL=NO are mutually exclusive.

TRACE=
Specifies whether (YES) or not (NO) this modification to the busy indicator is to
be traced by the SYSjes2 component trace. Refer to z/OS MVS Diagnosis:
Tools and Service Aids for further information concerning SYSjes2 component
tracing.

YES
Indicates that tracing is set on for this $QBUSY call.

TRACE=YES and REAL=NO are mutually exclusive.

NO
Indicates that tracing is set off for this $QBUSY call.

Notes:

1. TRACE= is only valid if you also specify either ACTION=ON or
ACTION=OFF.

2. IBM recommends that you do not turn SYSjes2 tracing off. If JES2
encounters a problem related to $QBUSY services, the data obtained
from this trace can significantly aid debugging procedures.

Environment
v Main task.
v $WAIT or WAIT cannot occur.

Notes:

1. On return from the $QBUSY routine, register 15 will contain a 0 (zero) if you
specified ACTION=ON or ACTION=OFF. JES2 provides no return codes for
ACTION=(TEST,...).

2. Register usage
v $QBUSY uses registers R0, R1, R14, and R15 as work registers.
v On entry, $QBUSY requires that R11 contain the address of the HCT.

$QCTGEN – Define a Quick Cell Control Table
Use $QCTGEN to define the attributes of a quick cell type in a quick cell control
table (QCT). Note that only LOC= is optional.

$QBUSY

238 z/OS V1R4.0 JES2 Macros

Format Description

NAME=
Specifies (in EBCDIC) the name of the quick cell control table.

SIZE=
Specifies the size (in bytes) of an individual quick cell.

NOFFS=
Specifies the offset of the NAME field in the quick cell.

COFFS=
Specifies the offset of the CHAIN field in the quick cell.

INIT=
Specifies the number (0-32767) of quick cells created in the initial quick cell
pool.

EXT=
Specifies the number (0-32767) of quick cells in a quick cell pool extension.

SP=
Specifies the storage subpool number where the quick cell pool resides.

LIMIT=
Specifies the maximum number (0-32767) of quick cells to GET/FREE at any
one time.

Environment
v Functional subsystem (HASPFSSM).
v MVS WAIT and $WAIT not applicable.

$QGET – Obtain Job Queue Element from the JES2 Job Queue
Use $QGET to obtain a job queue element from the specified logical queue of the
JES2 job queue and return the address of this element in register 1.

Note: An artificial JQE is returned.

ÊÊ
symbol

$QCTGEN NAME=cellname ,SIZE=nnn ,NOFFS=nnn ,COFFS=nnn Ê

Ê ,INIT=nnn
ANY

,LOC= BELOW

,EXT=nnn ,SP=nnn ,LIMIT=nnn ÊÍ

$QCTGEN

Chapter 3. JES2 Programmer Macros 239

Format Description

queue type
Specifies the logical queue from which the job queue element is to be obtained.
This queue type is indicated in the inline parameter list generated by the macro
expansion. Valid queue types and their meanings are:

$DUMMY
Reserved queue.

$FREE
Indicates that the JQE is to be obtained from the JES2 free queue.

$HARDCPY
Indicates that the JQE is to be obtained from the JES2 hardcopy queue.

$INPUT
Indicates that the JQE is to be obtained from the JES2 input queue.

$INWS
Indicates a QGET call for JES-managed initiators.

$OJTWS
Indicates that the JQE work selection algorithms are used to select an
eligible job for this transmitter.

$OJTWSC
Indicates that the JQE work selection algorithms are used to select an
eligible job for this transmitter and that the conversion queue ($XEQ) is
scanned for work.

$OUTPUT
Indicates that the JQE is to be obtained from the JES2 output queue.

$PURGE
Indicates that the JQE is to be obtained from the JES2 purge queue.

$RECEIVE
Indicates that the JQE is to be obtained from the JES2 SYSOUT receive
queue.

$SETUP
Indicates that the JQE is to be obtained from the JES2 setup queue.

$WLMINWS
Indicates a QGET call for WLM-managed initators.

$XEQ
Indicates that the JQE is to be obtained from the conversion queue.

ÊÊ
symbol

$QGET queue-type
,TYPE=class-list-prefix

Ê

Ê
,FOUND=relexp ,NONE=relexp ,CB= addrx

(R0)

Ê

Ê
L

,MF= (EX, label)
(Rx)

,NODETBL= addrx
(R0)

ÊÍ

$QGET

240 z/OS V1R4.0 JES2 Macros

$XEQCLAS
Indicates that the JQE is to be obtained from the JES2 execution class
queue.

$XMIT
Indicates that the JQE is to be obtained from the JES2 transmit queue.

Note: Although $INWS, $OJTWS, and $OJTWSC are not actual queue
types, they can be used to indicate work selection for offload job
transmitters or a call for initiators.

TYPE=
Specifies the prefix of the class list used if the queue type is $INWS, $OJTWS,
or $OJTWSC. The value specified must be a valid control block DSECT name,
for example, DCT or PIT. This value is also used to determine the offset of the
class list field. If TYPE= is not specified, the class list defaults to DCTCLASS
for offload job transmitters and PITCLASS for initiators.

FOUND=
Specifies a label or address in a register to which JES2 branches if a selectable
JQE is found.

NONE=
Specifies a label or address in a register to which JES2 branches if no
selectable JQE is found.

CB=
Specifies the address of a control block which is to be used for work selection
or an initiator call. This keyword is only valid if either the queue type is specified
as $INWS, $OJTWS or $OJTWSC.

MF=
Specifies the required form of this macro.

L Indicates the list form of the macro.

EX
Indicates the executable form of the macro. This form requires the address
of a parameter list.

label
The label of the parameter list.

(Rx)
The register that contains the address of the parameter list.

NODETBL=
Specifies the location of the MDCTNODS field in the job transmitter’s line
device control table (DCT). If the queue type specification is not $XMIT, this
keyword should not be used. If register notation is used, the address must have
been loaded into the designated register before execution of this macro
instruction.

Environment
v Main task.
v $WAIT can occur.

$QGET

Chapter 3. JES2 Programmer Macros 241

$QJIX – JES2 Job Number Services
Use $QJIX to allocate and deallocate JES2 job numbers, to maintain the JES2 job
number table (JNT), and to maintain the job number index table (JIX). Specifically,
you can use this macro to provide the following functions:

v Allocate a job number for a specified JQE

v Deallocate a job number for a specified JQE

v Swap the job numbers for two jobs as required for the “move job” function of
dynamic spool volume support

v Format the JNT and the JIX during system-wide warm start and cold start
processing

v Verify a JIX during an all-system warm start

Format Description

ACTION=
Specifies the action the $QJIX is to perform for the caller. Valid specifications
are:

GETJBNO
Indicates that $QJIX is to allocate a job number for the JQE provided. If a
job number is unavailable, $QJIX will $WAIT until a number is available if
WAIT=YES is coded or allowed to default. If this job is from another
member, QJIX will attempt to get the original job number. If that number is
unavailable, $QJIX assigns the next available job number.
ACTION=GETJBNO is the default.

FREEJBNO
Indicates the job number is to be freed.

SWAPJBNO
Indicates that the job numbers assigned to the two specified JQEs are to be
swapped and the JIX is updated to reflect that change.

FORMAT
Indicates the job number table (JNT) and the job queue index (JIX) are to
be initialized. They are formatted at initialization even if no jobs are
currently in the system. Following FORMAT processing, $QJIX will also
provide VERIFY processing as described below. This is valid only during
initialization.

VERIFY
Indicates that the job number of the JQE provided needs to be verified as
unique and not a duplicate of any other job on the job queues. If the job
number is unique, the JIX is updated; if the job number is not unique, the

ÊÊ
symbol

$QJIX
GETJBNO

ACTION= FREEJBNO
SWAPJBNO
FORMAT
VERIFY

Ê

Ê
,JQE= (Rn) (Rn)

(label , label)
YES

,WAIT= NO

ÊÍ

$QJIX

242 z/OS V1R4.0 JES2 Macros

caller receives an error indication and the JQE is freed. Use this
specification only for JES2 initialization processing.

JQE=
Specifies the address of the JQE to be added to the JIX. This keyword is
required for all ACTION= specifications except ACTION=FORMAT. If you
specify ACTION=SWAPJBNO, two JQEs are required. This can be any
combination of registers or labels.

WAIT=
Specifies whether (YES) or not (NO) the $QJIX routine is to $WAIT for an
available job number. WAIT= is valid only if you also specify, or allow ACTION=
to default to, GETJBNO.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful. If ACTION=VERIFY, then the job number is

not already in use.
4 No job numbers are currently available, or if ACTION=VERIFY, then

the job number was in use.
8 ACTION=FORMAT processing was unsuccessful. The FORMAT

request occurred after JES2 initialization.

Environment
v Main task and limited main task (initialization).
v $WAIT can occur if WAIT=YES is specified.

$QJQE – Obtain Address of JQE Queue Head
Use $QJQE to generate inline code that finds a specified JQE queue head. JES2
searches either the HASP communication table (HCT) or a checkpoint version.

Note: An artificial JQE is returned.

$QJIX

Chapter 3. JES2 Programmer Macros 243

Format Description

TYPE=
Specifies the queue type of the requested JQE head. Specify a standard queue
head name (listed below), a 1-byte field, or a register that contains the
JQETYPE of the JQEs on the queue.

Notes:

1. In Table 8 on page 244, for example, TYPE=EXEC is equivalent to
specifying a field that contains $XEQCLAS (X'7F').

2. If you specify TYPE=EXEC (in any form), you must also specify CLASS=.

3. Specify TYPE=FREE to scan the FREE JQE queue.

Table 8. $QJQE Standard Queue Head Names

Standard Queue Head
Name

Field Equate Value (hexadecimal)

INPUT $INPUT X'20'

CNVT $XEQ X'40'

SETUP $SETUP X'08'

EXEC $XEQCLAS X'7F'

SPIN $SPIN X'80'

OUTPUT $OUTPUT X'02'

HARDCPY $HARDCPY X'01'

PURGE $PURGE X'00'

RECEIVE $RECEIVE X'04'

XMIT $XMIT X'10'

FREE $FREE X'FF'

REBUILD n/a n/a

ÊÊ
symbol

$QJQE TYPE = head-name
label
(Rn)

CAT = cat-name

,REG= (Rn)
,DSERV=addr

Ê

Ê
,CLASS= class

label
(Rn)

,SRVCLASS= SRVC- classname (Rn)
Ê

Ê
,MODE= READ

UPDATE
REAL

,WSC=srvc-class ,SPECIAL= NO
YES

Ê

Ê
,GETFIRST= YES

NO
,INVQ= label

(Rn)

Ê

Ê
,LOOP=label,NOMORE=label

, PREG = (Rn)

ÊÍ

$QJQE

244 z/OS V1R4.0 JES2 Macros

DSERV=
Specifies the address of the DSERV control block of the checkpoint version
JES2 will search. If you do not specify DSERV=, JES2 searches the current
checkpoint data set.

DSERV is required and valid in any environment except the JES2 main task. If
specified, the caller must be in AR ASC mode.

The address of the DSERV control block can be obtained with either the SSI
function code 71 or the $CALL CKPTVERS service in HASCSRIC.

INVQ=
Specifies a label to which JES2 branches if the combination of TYPE= and
CLASS= parameters does not point to a valid head index. INVQ= is required if
you specify a queue type on TYPE= with a nonstandard name.

CLASS=
Specifies the class of the queue JES2 searches. Valid classes are: A-Z, 0-9,
TSU (X'E0'), STC (X'D0'), or a 1-byte field or register containing the class.
CLASS= is only valid on a TYPE=EXEC call (any format).

CAT=
Specifies the CAT for the class whose queue head is required as returned by
the $DOGCAT service.

SRVCLASS=
Specifies the service class queue name (an 8 byte field) or a register containing
the class to use.

LOOP= or GETFIRST=YES must be specified.

WSC=
Specifies the service class. Obtain the service class queue head from the
$DOGWSCQ service.

MODE=
Specifies the mode in which the JQE is required. Valid modes are those
supported by the $DOGJQE service (that is, READ and UPDATE).
MODE=REAL indicates that the real JQE is to be located and is only valid when
CLASS=, CAT=, or TYPE= is specified.

SPECIAL=
Specifies whether (YES) or not (NO) the JQE is to be obtained with update
access. See “$DOGJQE – Deliver or Get JQE” on page 111 for more details.

GETFIRST=
Specifies whether (YES) or not (NO) the first JQE is to be obtained, rather than
the zeroth JQE.

GETFIRST=NO is only allowed with TYPE=, CAT= or WSC= keywords and
ONLY when LOOP= is NOT specified.

REG=
Specifies the register (R2-R10 and R12) into which JES2 is to place the job
queue head address or the JQE address. If you do not specify LOOP=, JES2
returns the job queue head address.

If you specify LOOP=, JES2 returns the JQE address. If you specify LOOP=
and the end of the specified queue was reached, JES2 returns a zero.

LOOP=
Specifies the label that JES2 uses to loop through all the JQEs on the specified

$QJQE

Chapter 3. JES2 Programmer Macros 245

queue. When doing so, the value in REG= must remain unchanged from the
value $QJQE previously returned. If you specify LOOP=, you must also specify
NOMORE=. LOOP= is optional.

NOMORE=
Specifies the label of where to branch to when there are no more JQEs on the
specified queue.

NOMORE= is optional but if LOOP= or GETFIRST=YES is coded, NOMORE=
must also be coded.

PREG=
Specifies a register into which the address of the JQE that pointed to the JQE
returned in REG= maintained. This can be the 0th JQE and is used if the JQE
that was returned is placed on a different queue and you want to continue
looping where you left off. Place the value from this register into the register
specified in REG= to resume scanning the queues. This operand is optional
and is only valid when MODE=REAL and LOOP= is specified. Valid registers
are R2–R10 and R12. PREG= is main task only.

Environment
v If you specify DSERV=, the caller can be running under any environment except

the JES2 main task.
v If you do not specify DSERV=, the caller must be running under the JES2 main

task.
v $WAIT cannot occur.

$QLOC – Locate Job Queue Element for Specific Job
Use $QLOC to locate the job queue element associated with the job specified by a
job number and return the address of this element in register 1.

Format Description

jobnum
Specifies the binary job number associated with the job for which the job queue
element is being searched. If an address is used, it specifies the address that
contains the binary job number. If register notation is used, the binary job
number must be loaded into the designated register before the execution of this
macro instruction.

This is a required, positional parameter.

DSERV=
Specifies the address of the job information service token list (MVS DSERV
control block) of the checkpoint version that JES2 will search when attempting
to locate the JQE. If you do not specify DSERV=, JES2 searches the current
checkpoint data set.

DSERV= is only valid if the caller is in AR ASC mode.

ÊÊ
symbol

$QLOC jobnum
,DSERV=addr ,FOUND= addr

label

Ê

Ê
,NOTFOUND= addr

label

ÊÍ

$QJQE

246 z/OS V1R4.0 JES2 Macros

FOUND=
Specifies a location to which control is to be returned if the specified job
number is found in the JES2 job queue.

NOTFOUND=
Specifies a location to which control is to be returned if the specified job
number is not found in the JES2 job queue.

Return Codes
Condition codes resulting from issuing a $QLOC follow:

Condition Code Meaning
0 The specified job was found, and R1 contains the

address of the associated job queue element.
≠0 The specified job was not found.

Environment
v Main task (unless DSERV= is specified)
v All but the JES2 main task (if DSERV= is specified)
v $WAIT can occur.

$QLOCNXT
Find the next allocated job number after the current JQE/job number in the JIX.
Return the associated JQE to the caller.

If a job number of 0 is specified, the search will begin with job number 1.

Format Description

JOBNUM=
Current job number. JOBNUM= or JQE= are required and are mutually
exclusive.

JQE=
Current JQE. JOBNUM= or JQE= are required and are mutually exclusive.

FOUND=
Specifies a label to be branched to or a register to be branched on if the next
allocated job number is found.

NOTFOUND=
Specifies a label to be branched to or a register to be branched on if no other
allocated job numbers are found after the current job number in the JIX.

Return Codes
The following return codes (in decimal) are returned in register 15:

ÊÊ
symbol

$QLOCNXT JOBNUM= label
(Rn)

JQE= label
(Rn)

,FOUND= label
addr

Ê

Ê
,NOTFOUND= label

addr

ÊÍ

$QLOC

Chapter 3. JES2 Programmer Macros 247

Return Code Meaning
0 Next job number found (JQE address in R1).
4 Next job number not found (R1 is 0).

Environment
v Main task.

$QMOD – Modify Job Queue Element in the JES2 Job Queue
Use $QMOD to remove a modified job queue element from the JES2 job queue
and place it back on the queue in the specified logical queue according to the
priority of the job queue element.

Format Description

element
Specifies the address of an element that has been modified and is to be
requeued in the JES2 job queue. If register 1 is used, the address must be
loaded into register 1 before execution of this macro instruction.

Note: The JQE returned may be real or artificial.

queue
Specifies the logical queue where the job queue element is to be placed. This
value must always be one of the eight logical queue types. If register 0 is used,
one of these values must be loaded into register 0 before the execution of this
macro instruction.

The queue type operands may be ignored if the job queue element has been
flagged for cancellation. The resulting logical queue is as follows:

v JQE1OCAN bit on and JQE1PURG bit off. Any $QMOD with a $XEQ
specification is altered to $OUTPUT.

v JQE1OCAN bit off and JQE1PURG bit on. Any $QMOD with a JQEJOECT
and JQEHLDCT field 0 is altered to $PURGE. Any $QMOD with a
JQEJOECT or JQEHLDCT field nonzero is altered to $HARDCPY.

CAUTION:

If the processor issuing the $QMOD does not have exclusive ownership of
the JQE via $QSUSE, the results of the $QMOD macro instruction are
unpredictable. One way to guarantee exclusive ownership is to obtain the
JQE via a $QGET or $QADD macro instruction or with the $GETLOK
macro instruction.

ÊÊ
symbol

$QMOD element-addrx
(R1)

,queue-value
,(R0) ,ALONE

Ê

Ê
,PCHANGE=OK CHANGE

,PRIORITY= NOCHANGE

NO
,KEEP= YES ÊÍ

$QLOCNXT

248 z/OS V1R4.0 JES2 Macros

ALONE
Indicates that the busy flags associated with the moved element are to remain
unchanged. If ALONE is not specified, the busy flags associated with the moved
element are turned off.

Once the queues have been obtained, all modifications must be made to the
JES2 job queues before a $WAIT macro can be issued. Issuing a $WAIT macro
implies that the processor no longer requires the queues.

PCHANGE=OK
Indicates that the queue type many be ignored by $QMOD logic if it is
determined that another queue type is more appropriate. Refer to the queue
parameter description on this macro for examples when a queue type change
can occur.

PRIORITY=CHANGE|NOCHANGE
CHANGE indicates that when $QMOD places the job on the queue, JES2 can
modify the priority of the job. This is the default. NOCHANGE indicates that
when $QMOD places the job on the queue, the priority of the job will remain
unchanged.

When PRIORITY is set to CHANGE, the priority of the job will be set to 1 when
the job is placed on the hard copy queue.

KEEP=
Indicates a YES or NO. The option is valid only if the JQE is an artificial JQE.
KEEP=NO frees the memory for the artificial JQE.

Environment
v Main task.
v $WAIT can occur.

$QPUT – Return Job Queue Element to the JES2 Job Queue
Use $QPUT to return a job queue element to the JES2 job queue, placing it in the
specified logical queue.

Format Description

element
Specifies the address of an element which is to be returned to the JES2 job
queue. If register 1 is used, the address must be loaded into register 1 before
the execution of this macro instruction.

Note: The JQE returned may be real or artificial.

queue
Specifies the logical queue where the job queue element is to be placed. This
value must always be one of the eight logical queue types. If register 0 is used,
one of these values must be loaded into register 0 before the execution of this
macro instruction. If $XEQ is specified and the execution node is not equal to
the local node, the queue type is altered to $XMIT.

ÊÊ
symbol

$QPUT element-addrx
(R1)

queue-value
(R0)

NO
,KEEP= YES ÊÍ

$QMOD

Chapter 3. JES2 Programmer Macros 249

The queue type specifications may be ignored if the job queue element has
been flagged for cancellation. The resulting logical queue is as follows:

v JQE10CAN bit on and JQE1PURG bit off. Any $QPUT with a $XEQ or
$XMIT specification is altered to $OUTPUT.

v JQE10CAN bit off and JQE1PURG bit on. Any $QPUT with a JQEJOECT
and JQEHLDCT fields 0 is altered to $PURGE. Any $QPUT with a
JQEJOECT or JQEHLDCT field nonzero is altered to $HARDCPY.

CAUTION:

The specified job queue element must be previously obtained with a
$QGET or $QADD macro instruction or the action of the $QPUT macro
instruction is unpredictable.

KEEP=
Indicates a YES or NO. The option is valid only if the JQE is an artificial JQE.
KEEP=NO frees the memory for the artificial JQE.

Environment
v Main task.
v $WAIT can occur.

$QREM – Remove Job Queue Element from the JES2 Job Queue
Use $QREM to remove a specified job queue element from the JES2 job queue.

Format Description

element
Specifies the address of an element that is to be removed from the JES2 job
queue. If register notation is used, the address must be loaded into the
designated register before the execution of this macro instruction.

Notes:

1. The JQE returned may be real or artificial.

2. If an artificial JQE is returned, the storage is freed by the $QREM service.

CAUTION:

The specified job queue element must have been previously obtained with a
$QGET or $QADD macro instruction or the action of the $QREM macro
instruction is unpredictable.

Environment
v Main task.
v $WAIT can occur.

ÊÊ
symbol

$QREM element-addrx
(R1)

ÊÍ

$QPUT

250 z/OS V1R4.0 JES2 Macros

$QSUSE – Synchronize to Use Shared Queues
Any JES2 processor that begins an access to any information in the checkpoint
records (which are shared if the system is a multi-access spool environment) must
execute the $QSUSE macro instruction before such access to update checkpoint
records.

The contents of the checkpoint records include: shared queue control elements
(QSEs), shared communications queues (SCQs), checkpointed HCT variables
(beginning at $SAVEBEG, including job queue headers), remote message spooling
queues, remote sign-on table, master track group map, job queue, and job output
table (JOT).

Format Description

TYPE=
Execution of the macro tests the $QSONDA bit and $CKPTACT bit in the
$STATUS field of the HCT. Updating any checkpointed information is permitted
only if both bits are 0. If TYPE= is not specified, WAIT is the default.

WAIT
Indicates that the calling processor waits ($WAIT CKPT) access to update
the checkpoint records is permitted. The checkpoint processor is activated,
if necessary, and it later posts ($POST) all other processors forced to wait
($WAIT CKPT).

OWN= and NOTOWN= are not valid if TYPE=WAIT

TEST
Indicates that an immediate return to the caller occurs, with a zero condition
code if updating is permitted.

The permission to update granted by execution of this macro expires when
the processor executes any $WAIT macro instruction, actual or imbedded in
another macro.

OWN= and NOTOWN= are optional if TYPE=TEST

LURK
Indicates that control should be returned to the caller once queue
ownership is established by any PCE. This call type differs from the WAIT
type because LURK does not request that JES2 interrupt checkpoint cycle
processing unless other PCEs have also requested the queues.

Use TYPE=LURK to make a passive request for queue ownership. LURK
can be useful for processing non-critical work, which if it ever gets done
does require queue ownership. However, processing work in this manner
avoids the possibility of checkpoint contention.

When control returns from a $QSUSE TYPE=LURK call, there is no
guarantee this JES2 member will own the queues.

OWN= or NOTOWN= or both must be specified if TYPE=LURK

ÊÊ
symbol

$QSUSE
WAIT

TYPE= TEST
LURK

OWN= Rn
NOTOWN= label

ÊÍ

$QSUSE

Chapter 3. JES2 Programmer Macros 251

OWN=
Specifies a register that contains the address of the routine or label to which to
branch if the queues are owned by this member.

NOTOWN=
Specifies a register that contains the address of the routine or label to which to
branch if the queues are not owned by this member.

Environment
v Main task.
v $WAIT can occur if TYPE=WAIT or TYPE=LURK is specified.

$QUESMFB – Queue a JES2 SMF Buffer on the Busy Queue
Use $QUESMFB to place a JES2 SMF buffer address on the busy queue
($SMFBUSY) and MVS post (POST) the HASPACCT subtask.

Format Description

buffer-addr
Specifies the address of the buffer to be queued. If register notation is used, the
buffer address must be loaded into the designated register before the execution
of this macro instruction.

Environment
v Main task.
v $WAIT cannot occur.

$QUEUE – Maintain a First-in First-out (FIFO) Queue
Use $QUEUE to build, add an element to, or get an element from a FIFO queue.
This macro provides an easy method of maintaining queues for any purpose.

Format Description

ACTION=ADD|DELETE|INIT
Specifies the action you want $QUEUE to perform. The actions are:

Action Meaning

ADD Requests $QUEUE to add an element to the end of the queue.

ÊÊ
symbol

$QUESMFB buffer-addr
(R1)

ÊÍ

ÊÊ
symbol

$QUEUE ACTION= ADD
BUILD
DELETE

,ELEMENT= addr
(Rn)

Ê

Ê
,ERROR=label

,HEAD= addr
(Rn) 251

,SUBPOOL= nnn

ÊÍ

$QSUSE

252 z/OS V1R4.0 JES2 Macros

BUILD
Requests $QUEUE to build a new queue including all the necessary
chaining fields.

DELETE
Requests $QUEUE to take an element from the end of the queue and
place the address of the element into register 1. If the queue is empty
when you specify ACTION=DELETE, register 1 will contain a 0.

Note: ACTION= is a required keyword.

ELEMENT=addr|(Rn)
Specifies the address, or a register that contains the address, of the element
you want to add to the queue.

$QUEUE uses registers 0, 1, 14, and 15 as work registers. Do not use these
registers as values for ELEMENT=. This keyword is valid and required only if
you specify ACTION=ADD.

ERROR=label
Specifies the label of the routine which receives control if there is an error in the
queue. If you do not specify ERROR=, JES2 does not process queue errors.

HEAD=addr|(Rn)
Specifies the address, or a register that contains the address, of the queue
head.

Note: If specified as an address, $QUEUE places the address in register 2. In
this case, do not specify ELEMENT=(R2).

$QUEUE uses registers 0, 1, 14, and 15 as work registers. Do not use these
registers as values for HEAD=.

Note: HEAD= is a required keyword.

SUBPOOL=nnn|251
Specifies the subpool from which to obtain the storage for the queue elements.
This keyword is valid only if you specify ACTION=BUILD.

Environment
v All environments.
v MVS and $WAITs will not occur.

$RDIRTAB – Build Table to Redirect Responses to Specific Commands
Use $RDIRTAB to build a table JES2 uses when directing the response to a
command to a specific console and/or console area other than the console on
which the command was entered.

Format Description

TABLE=
Specifies the start or end of the redirection table. Use TABLE=HASP to start a

ÊÊ
symbol

$RDIRTAB TABLE= HASP
USER
END

,NAME=cccc
ÊÍ

$QUEUE

Chapter 3. JES2 Programmer Macros 253

redirection table for JES2. Use TABLE=USER to start a redirection table for the
user. Use TABLE=END to end a redirection table.

NAME=
Specifies the 1- to 4-character name of a command group which appears on
the REDIRECT(vvvvvvvva) initialization statement that defines the console on
which the operator enters the command. Valid JES2 command group names
(cccc) are:
DA Display active jobs command
DCON Display network connections
DEF Display JES2 parameter definitions
DF Display forms queue
DI Display initiators
DJ Display job, task (STC), or TSO/E logon (TSU) information
DN Display queued jobs
DNOD Display NJE nodes
DQ Display number of queued jobs
DSPL Display spool volumes
DU Display units
LJ List job output, task (STC), or TSO/E logon (TSU) information

You can also define your own 1- to 4- character command group names in a
user redirection table. The 1- to 4-character command group name in a
redirection table should correspond to the name on the CMDRDIR= parameter
of the $SCANTAB macro for the command you are adding to the redirection
table.

Environment
v Main task.
v $WAIT will not occur.

$REPLYV – Generate $REPLYV Table Entries
Use $REPLYV to specify valid write to operator (WTOR) replies and process labels.
The table generated by $REPLYV is used by the $BLDMSG macro to validate the
replies to WTORs.

Format Description

'string'
Specifies a 1-to 8-character string. This string is compared to the WTOR that is
entered by the operator and is used by the $BLDMSG macro.

This parameter is required and has no default.

value
Specifies a value to be used when the string matches the WTOR entered by
the operator. This value can include one of the following:

v an address of a routine

ÊÊ
symbol

$REPLYV ('string',value)
,('string',value),...

Ê

Ê
YES

END= NO

ÊÍ

$RDIRTAB

254 z/OS V1R4.0 JES2 Macros

v a number (for example, 2 or 4 or 8, to be used as an index)

END={YES|NO}
Specifies whether (YES) or not (NO) to generate an end for the table.

Examples
Following are 2 ways you can code the $REPLYV macro:
$REPLYV (CANCEL,KDRCAN),(CONT,KDRCONT)

or
$REPLYV (CANCEL,KDRCAN),END=NO
$REPLYV (CONT,KDRCONT),END=YES

In both examples, the 2 valid replies are CANCEL and CONT. Control is transferred
to label KDRCAN to when ‘CANCEL’ is replied, and to label KDRCONT when
‘CONT’ is replied.

Environment
v All environments.
v $WAIT is not applicable - this macro generates a DSECT or a static table entry; it

does not generate executable code.

$RESTORE – Restore Registers from the Save Area
Use $RESTORE to restore one or more registers from the current processor’s
current save area (that is, from the save area built by the most recently issued
$SAVE macro instruction). Or use $RESTORE to restore one or more registers from
the current processor’s previous save area.

Format Description

list
Specifies a list of one or more registers, and/or groups of registers to be
restored. If more than one register is being restored, the entire list must be
enclosed in parentheses.

A register group is indicated by a pair of registers enclosed in parentheses. All
registers, beginning with the first register specified and ending with the second
register, are restored. The order of restoring a group of registers is: R14, R15,
R0-R12. If the list consists of a single group, the outer (list) parentheses are not
required.

Note: All registers must be specified symbolically. The accepted register
symbols are: R0, R1, R2, . . ., R15.

Examples:
Restore register 2
$RESTORE (R2) or
$RESTORE R2

Restore registers 15 through 8
$RESTORE ((R15,R8)) or
$RESTORE (R15,R8)

Restore register 3 and register 10

ÊÊ
symbol

$RESTORE list ÊÍ

$REPLYV

Chapter 3. JES2 Programmer Macros 255

$RESTORE ((R3),(R10)) or
$RESTORE ((R3),R10) or
$RESTORE (R3,(R10))

Restore registers 0, 3 through 5, and 8
$RESTORE (R8,R0,(R3,R5))

Note: The sublist order is unimportant.

Environment
v All environments.
v $WAIT cannot occur.

$RETABLE – Removes Hasp/User Table Entry
Use $RETABLE to remove a table from a MCT table pair. See Appendix A for a
detailed description of table pairs.

Format Description

TABLE=
Specifies the table pair to be accessed.

TABLE=SCAN - $SCANTAB
TABLE=WST - $WSTAB
TABLE=BERT - $BERTTAB
TABLE=PCE - $PCETAB
TABLE=DTE - $DTETAB
TABLE=DCT - $DCTTAB
TABLE=TID - $TIDTAB
TABLE=PCR - $PCTAB

ADDR=
Specifies the address of the table to be removed.

$PAIR=
Specifies the specific offset and control block of the table pair from which the
dynamic table should be removed

ERRET=
The address to go to if the table could not be removed.

OKRET=
The address to go to if the table is successfully removed.

ÊÊ
label

$RETABLE TABLE= SCAN
WST
BERT
PCE
DCT
DTE
TID
PCR

ADDR = addr $PAIR = value Ê

Ê ERRET= addr
OKRET= addr

ÊÍ

$RESTORE

256 z/OS V1R4.0 JES2 Macros

Return Codes
The following return codes (in decimal) are returned in register 15:

Return Code Meaning
0 Requested table entry was found.
4 Requested table entry was not found or end-of-table.

Environment
v Main task

$RETBLK – Return a Storage Cell to a Free Cell Pool
Use $RETBLK to return a number of predefined storage cells to one of several
previously established free cell pools.

Format Description

TYPE=
Specifies the type of storage cell to be returned to the free cell pool.
Specifications are as follows:

Specification Meaning
SAVE An MVS-type save area
JIB A JOE information block
BUF A 4K I/O buffer
RPL A request parameter list control block chain
GTRC A GETREC chain control block
SSOB A subsystem options block

ADDR=
Specifies the address of the first cell to be returned. If register 1 is used, it must
contain the address of the first cell to be returned before executing this macro.

Environment
v Functional subsystem (HASPFSSM).
v MVS WAIT cannot occur.

$RETSAVE – Return a JES2 Save Area
Use $RETSAVE to return the current JES2 save area(s) to the JES2 free pool of
save areas.

ÊÊ
symbol

$RETBLK
BUF

TYPE= SAVE
JIB
RPL
GTRC
SSOB

(R1)
,ADDR= addrx

ÊÍ

$RETABLE

Chapter 3. JES2 Programmer Macros 257

Format Description

FRETRE=
Specifies the label or a register that contains the address of the task control
block (TCB) recovery element (TRE) that is associated with the save area(s)
that are being returned to the JES2 free pool. FRETRE= is a valid specification
only in the user environment.

Environment
v JES2 main task.
v $WAIT cannot occur.

$RETURN – Restore Registers, Free the JES2 Save Area, and Return
to the Caller

Use $RETURN to restore the caller’s registers saved in the current processor save
area and return that save area to the save area pool.

Notes:

1. If this macro is coded within a functional subsystem environment, $RETURN
generates inline code to place the save area pointed to by register 13 onto the
unused save area stack. All necessary code for standard linkage conventions is
also generated.

2. Tracing for $RETURN is controlled through the TRACE= parameter on the
$SAVE macro.

3. In the JES2 and USER environments, the ASC mode at the time the $SAVE is
also restored.

4. Access registers AR0, AR1, and AR15 are not affected by the $RETURN macro.
In the USER environment, all other access registers are restored. In the JES2
environment, access registers are restored if the caller was in AR ASC mode at
the time of the $SAVE.

5. In the FSS environment, AR ASC mode callers are not supported.

Format Description

RC=
Specifies a numeric return code to be returned in register 15. If this operand is
not specified, the return code is set to 0. RC=0 is the default.

If register 15 is used, the return code value must be loaded into register 15
before the execution of this macro instruction.

ÊÊ
symbol

$RETSAVE
FRETRE= label

(Rn)

ÊÍ

ÊÊ
symbol

$RETURN
RC= n

(R15)
(R14)

,RETREG= (Rn)

Ê

Ê
,FSACB= address

(Rn)
NO

,PARM= YES

ÊÍ

$RETSAVE

258 z/OS V1R4.0 JES2 Macros

|
|
|

|
|

RETREG=
Specifies a register used to save the return address. R14 is the default.

RETREG= is valid only in the JES2 main task environment.

FSACB=
Used to determine whether processor tracing is on. The use of this keyword is
only valid in the functional subsystem environment. If an FSACB specification is
not provided, only global $RETURN tracing is done.

PARM=
Specifies whether (YES) or not (NO) $RETURN processing should skip over an
inline parameter list when control is returned to the calling module from the
current save area. Return is through register 14.

Note: The first byte of the parameter list must contain the length of the
parameter list. (The length must also include this first byte.)

Notes:

1. If this macro is issued from the main task environment when a PRE ($ESTAE)
currently exists for the save area level about to be returned, the $ESTAE is
cancelled.

2. The use of the $RETURN macro assumes that register 11 contains either the
address of the HASP communication table (HCT) for the JES2 main task and
subtask environment, the HASP function communication table (HFCT) for a
functional subsystem module or the HASP common communication table
(HCCT) for a user task environment.

Environment
v All environments.
v $WAIT cannot occur.
v Callers in AR ASC mode are supported in the JES2 and USER environments.

$RETWORK – Return a Work Area
Use $RETWORK to return a work area obtained with the $GETWORK macro
instruction.

Format Description

location
Specifies the address of the work area to be returned. (This address is loaded
into register 1.)

The work area to be returned must have been obtained via a previous
$GETWORK macro instruction.

Environment
v Main task.
v $WAIT cannot occur.

ÊÊ
symbol

$RETWORK location-addrx
(R1)

ÊÍ

$RETURN

Chapter 3. JES2 Programmer Macros 259

$RUSE – Establish USING on a Register
Use $RUSE to establish or drop a USING on a register and document that register
usage. If you cannot use an actual USING on a register and the routine relies on
the register’s contents for a lengthy duration, use $RUSE. JES2 establishes a
dummy DSECT with the label $RUSE in $MODULE. The macro equates the symbol
you supply to the DSECT and then generates a USING.

Notes:

1. You must code $MODULE in any module issuing $RUSE.

2. You can only specify one $RUSE per register to be in effect at any one time.

3. You cannot issue $RUSE for a symbol that is already defined in a module
except for a symbol defined by a prior $RUSE invocation.

Format Description

RX=
Specifies the register (0-15) for which JES2 establishes or drops the USING.

USE=
Specifies whether this macro invocation is to establish a register USING or
DROP a previous register USING.

USING,symbol
Indicates that this macro call is to establish a register USING. If the
specified register is currently in use due to a prior $RUSE call, JES2 drops
the register and then establishes this USING.

symbol is required when you specify USE=USING.

DROP[,symbol]
Indicates that this macro call is to drop a previously established USING. If
$RUSE was not used to establish the USING for the specified register,
JES2 does not drop the USING.

symbol is optional when you specify USE=DROP. However, if you specify a
symbol, JES2 confirms that the previous USE=USING for this register
matches this symbol. If the symbols do not match, JES2 issues an MNOTE
that indicates there was no previous USING for this symbol.

Environment
v All environments.
v $WAIT cannot occur.

$SAVE – Obtain JES2 Save Area and Save Registers
The $SAVE macro instruction obtains a register save area from a JES2-managed
save area pool and saves registers 14, 15, and 0 through 12 in the save area. No
registers are destroyed by executing this macro. If this macro is coded within any
environment except the JES2 main task, $SAVE will save the registers in the save
area pointed to by register 13. All necessary code for standard linkage conventions
is also generated. For information on linkage conventions, refer to z/OS JES2
Installation Exits.

ÊÊ
symbol

$RUSE ,RX= Rn
n

,USE= (USING,symbol)
(DROP,symbol)

ÊÍ

$RUSE

260 z/OS V1R4.0 JES2 Macros

Access registers are always saved in the USER environment. In the JES2
environment, if the callers of $SAVE is in AR ASC mode, then access registers are
saved. The ASC mode upon return from the $SAVE macro in the JES2 and USER
environment depends on the assembly time global symbol &SYSASCE (set by the
MVS SYSSTATE macro) as follows:

If SYSASCE= then $SAVE returns in

P primary ASC mode

AR AR ASC mode

ANY the ASC mode of the caller of $SAVE

In the FSS environment, AR ASC mode callers are not supported.

Format Description

TRACE=
Specifies whether the $SAVE macro and corresponding $RETURN macro are
traced as follows:

YES
For $SAVE:

Specifies the PCE address; the contents of registers 14, 15, 0 and 1; and
an 8-character symbol designating where the $SAVE macro instruction was
issued and traced.

For $RETURN:

Specifies that $RETURN is traced through the JES2 event trace facility. The
PCE address and the returned registers, 14, 15, 0, and 1, are traced
(TRACE ID=2 in the JES2 main environment or TRACE ID=19 in the user
environment), and an 8-character symbol designating where the $RETURN
macro was issued is also traced.

NO
Indicates that the $SAVE and $RETURN macro instructions are not traced.
This is the default.

NAME=symbol
Specifies the name associated with this $SAVE macro for tracing and diagnostic
purposes. If NAME is not specified, the label (symbol) on the $SAVE macro is
used for identification. If neither NAME or symbol is specified, the current
CSECT name is used.

REGS=
Specifies whether a starting store multiple instruction (STM) and ending load
multiple instruction (LM) are used. This specification is not valid in JES2 main
task.

ÊÊ
symbol

$SAVE
NO

TRACE= YES
,NAME=symbol

Ê

Ê
YES

,REGS= NO
,FSACB= address

(Rn)

ÊÍ

$SAVE

Chapter 3. JES2 Programmer Macros 261

FSACB=
Used to determine whether processor tracing is on. The use of this keyword is
only valid in the functional subsystem environment. If an FSACB specification is
not provided, only global $RETURN tracing is done.

Note: The use of the $SAVE macro assumes register 11 contains either the
address of the HASP communication table (HCT) for the JES2 main task
and subtask environment, the HASP function communication table (HFCT)
for a functional subsystem environment, or the HASP common
communication table (HCCT) for a user task environment.

CAUTION:

The TRACE=YES parameter is provided so that normal JES2 operations are
traced via the JES2 trace facility. Most JES2 central services specify
TRACE=YES on their respective $SAVE macros. Individual routines issuing
the $SAVE macro should not specify TRACE=YES if the routine is called an
excessive number of times, unless the routine is considered an part of the
normal JES2 logic flow. If a routine is traced on an infrequent basis, a trace ID
can be assigned to that function so it can be traced independently.

Also, you must have stored in register 11 the address of the HCT (or the
HFCT if running in an FSS environment) before executing this macro.

Environment
v All environments.
v AR mode callers are not supported in the HASPFSSM address space.
v $WAIT cannot occur in the main task.
v MVS WAIT can occur in the user, subtask, and FSS environments.

$SCAN – Scan Initialization Parameters
Use $SCAN to scan parameter statements, placing specified values in associated
control blocks or displaying values associated with specified keywords. $SCAN is
also used for generating messages when called by the $BLDMSG macro.

$SAVE

262 z/OS V1R4.0 JES2 Macros

Format Description

SCAN=
Specifies either a scan of a parameter statement specifying values to be
scanned and placed in control blocks, a scan of a parameter statement
requesting display of the values associated with specified keywords, or a scan
of parameter statements indicating something to be deleted.

CR
Indicates that a new parameter statement is to be created. If the statement
already exists, $SCAN returns an error.

DELETE
Indicates to scan a parameter statement to delete an element.

DISPDEL
Indicates to scan a parameter statement to display an element, and then
delete it.

SET
Indicates to scan a parameter statement specifying values to be scanned
and placed in control blocks. The DISPOUT=, DISPLEN=, and DISPRTN=
keywords are not required if SCAN=SET is also specified.

ÊÊ
symbol

$SCAN SCAN= CR
(DELETE ,SINGLE)

DISPDEL
SET
DISPLAY
SETDISP
SETCR
SETCRDISP
CRDISP

Ê

Ê ,TABLES= table-addrx
(Rn) ,CALLER= caller-value

(Rn)

Ê

Ê ,PARM= parm-addrx
(Rn)

,PARMLEN= length-value
(Rn)

Ê

Ê ,DISPOUT= outarea-addrx
(Rn)

,DISPLEN= outlen-value
(Rn)

Ê

Ê ,DISPRTN= rtn-relexp
(Rn) ,CBADDR= addrx

(Rn)
,TOKEN=cb-addr

Ê

Ê
','

,SEPAR= 'c'
field-name
NULL

,DISPER= addrx
(Rn)

,WARNMSK= label
(Rn)

Ê

Ê
NO

,LONG= YES

ÊÍ

$SCAN

Chapter 3. JES2 Programmer Macros 263

DISPLAY
Indicates to scan a parameter statement specifying keywords, the
associated values for which should be displayed.

SETDISP
Indicates that a SET operation is to be completed immediately followed by a
DISPLAY operation. The display shows the results of the SET. This is all
performed within a single call to $SCAN.

SETCR
Indicates that this macro call can be used either to reset or to create an
element(s).

SETCRDISP
Indicates that a SETCR operation is to be completed and to be immediately
followed by a DISPLAY operation. The display shows the results of the SET.
This is performed within a single call to $SCAN. You must also specify the
DISPLEN= and DISPRTN= keywords.

CRDISP
Indicates that a create operation is to be completed immediately followed by
a DISPLAY operation. The display shows the results of the SET. This is
performed within a single call to $SCAN. You must also specify the
DISPLEN= and DISPRTN= keywords.

SINGLE
Indicates to limit the scan to a single parameter keyword (and any
subscanning required for that keyword).

TABLES=
Specifies the address of storage defined using the $PAIR macro. This operand
is required. This operand is required.

CALLER=
Specifies a caller id for use during the scan. The id can be a value from 1 to
255. JES2 ids are assigned using 1 and ascending values, and ids should be
assigned for installation uses of $SCAN, if required, using 255 and descending
values. When CALLER is specified, only the scan table ($SCANTAB) entries
having this caller id specified for their CALLER= keyword and those entries not
specifying CALLER= are the entries that are used in the scan. If this operand is
not specified, then all entries in the $SCANTAB tables are used when
processing the request.

PARM=
Specifies the address of the parameter statement that is to be scanned. If
register notation is used, the register must contain the address of the parameter
before executing $SCAN. This operand is required.

PARMLEN=
Specifies the length (that is, the length plus 1) of the parameter statement
specified for the PARM= operand. If register notation is used, the register must
contain the parameter length value before executing the macro. This operand
is required .

DISPOUT=
Specifies the address of the output area where the display lines are placed for
the routine specified by DISPRTN=. This operand is required .

DISPLEN=
Specifies the length of the output area specified for the DISPOUT= operand.
This operand is required .

$SCAN

264 z/OS V1R4.0 JES2 Macros

DISPRTN=
Specifies the address of the routine to be invoked to display the scan results.
The routine is passed the address of the current scan work area, which
contains all pertinent information, in register 1. This routine receives control to
issue diagnostic error messages. This operand is required .

CBADDR=
Specifies the oldest parent control block. If CBADDR= is specified, $SCAN
does not search for a control block for this level of scanning. However, $SCAN
does perform whatever scanning or indexing that is requested by $SCANTAB
using this specified control block.

TOKEN=
Specifies the address of a control block that can be passed to the PRESCAN,
POSTSCAN, and DISPLAY exit routines.

SEPAR=
Specifies the separator character that is to be used between non-text fields
when the message is displayed. This character is not used between text fields
or fields containing both variable and text fields.

‘c’ Indicates a single character that will be used as the separator character.
You must code the single apostrophes.

‘,’ Indicates a comma is used as the default separator character. You must
code the single apostrophes.

field-name
Indicates a field containing the character to be used as the separator
character.

NULL
Indicates that no separator character is used.

DISPER=
Specifies the address or a register that contains an address of a display ID flag
used during $SCAN processing. If specified on the $SCANTAB macro, then any
flag bit that is set on in that flag must also be set on for the $SCAN call if the
$SCANTAB is to be used. A value of zero is equivalent to not specifying this
keyword.

WARNMSK=
Specifies the label or a register that contains the address of a 1-byte mask that
is compared against the WARNING= keyword specification on the $SCANTAB
macro. If any bits match, SCAN processing ignores the parameter and returns
an error return code. The 8 bits of the mask are set as follows:

Bit Use
bit 0 X'80' – indicates obsolete parameter and a warning message
bits 1-5 reserved – defined in HASPEQU
bits 6-7 installation indicators (generally use $SCWxxxx equates)

LONG=
Specifies whether (YES) or not (NO) JES2 will issue the long form of the
message. The long form of a message is defined by specifying
’DISPALL=LONGONLY’ on the $SCANTAB macro for certain parts of the
message. The text or value represented by $SCANTAB is displayed in addition
to the text for the short form of the message.

Return Codes
The following return codes (in decimal) are returned in register 15.

$SCAN

Chapter 3. JES2 Programmer Macros 265

Return Code Meaning
0 Indicates the $SCAN request executed successfully.
4 Indicates the scan found an obsolete keyword (as indicated by a

$SCANTAB entry specifying OBS=YES) during a first-level scan.
8 Indicates the scan found a keyword not supported in the tables, or

not supported for this caller id.
12 Indicates the scan encountered scanning errors (invalid syntax,

etc.) that could not be resolved or an obsolete keyword during a
subsequent scan (other than first-level).

Environment
v Main task and during JES2 initialization.
v $WAIT cannot occur during JES2 initialization but can occur during command

processing.

$SCANB – Backup Storage for a Scan
Use $SCANB to backup a copy of a storage area before it is possibly changed
during execution of the $SCAN facility. $SCANB may be used only within a
pre-scan or post-scan exit routine specified via the PRESCAN and PSTSCAN
operands of the $SCANTAB macro.

The $SCAN facility uses $SCANB to backup all control block fields before they are
changed. If, at any time during the scan, an error is found, $SCAN uses the
backups created by $SCANB to restore all the changed fields to their contents
before the start of the scan. If a $SCAN pre-scan or post-scan exit routine changes
a storage area, it should first backup that area using the $SCANB macro.

Format Description

SCWA=
Specifies the address of the current scan work area, mapped by the $SCANWA
macro.

ADDR=
Specifies the address of the storage area to backup before the scan possibly
changes it.

LENGTH=
Specifies the length (in bytes) of the storage area indicated by the ADDR
operand. If register notation is used, only registers 2 through 12 are valid.

TYPE=
Specifies that an area of storage is to be used following a SET and DISPLAY
$SCAN request or if an error occurs within a $SCAN call.

DISPLAY
Indicates to save an area of storage to use to display the results of a

ÊÊ
symbol

$SCANB SCWA= addrx
(R1)

,ADDR= addrx
(R0)

,LENGTH= label
(Rn)

Ê

Ê
BACKUP

,TYPE= DISPLAY
ERROR
INVALIDATE

ÊÍ

$SCAN

266 z/OS V1R4.0 JES2 Macros

SCAN=SET request. The value that is set is passed to $SCAN and used as
input for a SCAN=DISPLAY request, for example:
$SCANB SCAN=DISPLAY,ADDR=addrx,LENGTH=

This value must, therefore, also be scannable by $SCAN.

ERROR
Indicates to save an area of storage to use if an error is encountered during
a $SCAN call. $SCAN then returns this keyword value to point to the
location of the error.

BACKUP
Indicates to produce a backup copy of the storage area before it is possibly
changed during the execution of $SCAN.

INVALIDATE
Indicates that any TYPE=BACKUP areas that have been created for the
specified range of storage are no longer valid.

Environment
v Not applicable.

$SCANCOM – Call the $SCAN Facility Comment Service Routine
Use the $SCANCOM macro to search for and locate the first non-blank,
non-comment character in a specified text string. This facility allows the $SCAN
facility to ignore (skip over) comment text provided in both initialization statements
and commands. A return code is passed in register 15. JES2 returns the address of
the non-blank, non-comment character in register 1.

Format Description

TEXTBEG=
Specifies the address of the beginning of the text that is to be scanned by the
$SCAN facility.

TEXTEND=
Specifies the address of the end of the text that is to be scanned by the $SCAN
facility.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Non-blank and no comments found
4 Valid comment, non-blank found
8 End of statement encountered, no non-blanks, or non-comment

characters found
12 No asterisk-slash (*/), the comment ending delimiter, found and an

invalid comment encountered

ÊÊ
symbol

$SCANCOM TEXTBEG= label
(R1)

,TEXTEND= label
(R0)

ÊÍ

$SCANB

Chapter 3. JES2 Programmer Macros 267

Environment
v JES2 main task.
v $WAIT cannot occur.

$SCAND – Call the $SCAN Facility Display Service Routine
Use the $SCAND macro instruction to call the display service exit routines called by
$SCAN to add text to a display line being created for the SCAN=DISPLAY request.
This macro instruction can only be called from a $SCAN exit routine or $SCAN
itself.

Format Description

SCWA=
Specifies the address of the current scan work area. This can either be
provided as the actual address, a label, or a register (R1-R12).

TEXT=
Specifies the text (specifies in single quotes) to be added to the display line or
the address of that text as specified in a register (R2-R12).

LENGTH=
Specifies the length of the text to be added. This can either be a label or a
register (R2-R12). If the actual text is provided on the TEXT= keyword, the
length specification on this keyword defaults to the length of that text.

BRKOPT=
Specifies that the text specified by the TEXT= keyword will be separated (YES)
or not (NO) from the text already passed.

DEBLANK=
Specifies whether (YES) or not (NO) the blanks and X'00's are to be removed
from the front and end of the text.

MARK=
Specifies whether (YES) or not (NO) the location of the text should be
remembered in case the display at this $SCAN level must be backed out
because a later display filter did not match. If you specify MARK=YES, you
must also have specified BRKOPT=YES.

CONV=
Specifies conversion.

CHAR=
Specifies a character string of the text passed to $SCAND. This string does
not require conversion except for possible trimming of blanks.

ÊÊ
symbol

$SCAND SCWA= addrx
(R1)

,TEXT= 'text'
(R0)

,LENGTH= label
(Rn)

Ê

Ê
YES

,BRKOPT= NO
YES

,DEBLANK= NO
,MARK= YES

NO

Ê

Ê
,CONV= CHAR

NUM
HEX

ÊÍ

$SCANCOM

268 z/OS V1R4.0 JES2 Macros

NUM=
Specifies a decimal number that was passed in the text string. This number
needs to be converted to printable.

HEX=
Specifies a hexadecimal number that was passed in the text string. This
number needs to be converted to printable.

Environment
v JES2 main task.
v $WAIT cannot occur.

$SCANDIA – $SCAN Diagnostic Message Service
Use $SCANDIA to issue a diagnostic message during scan processing (that is,in
the HASPSCAN environment). You can call this service both pre- and post-scan
exits to issue warning- or error-level messages.

Format Description

SCWA=
Specifies the address as a label or a register (R1-R12) that contains the
address of the SCWA (scan work area) to be used for the scan level.

MSG=
The diagnostic message skeleton of the message text, mapped as follows:

Offset Use

+0 2-byte reason code (EBCDIC or numeric)

+2 1-byte text length

+3 text

TYPE=
Specify the message type as one of the following:

WARN
Indicates that JES2 will issue a warning message. $SCAN processing
continues.

ERROR
Indicates that JES2 will issue an error message. $SCAN processing ends.

Environment
v Main task (HASPSCAN environment only)

v $WAIT can occur.

ÊÊ
symbol

$SCANDIA SCWA= label
(Rn)

,MSG= ,TYPE= ERROR
WARN

ÊÍ

$SCAND

Chapter 3. JES2 Programmer Macros 269

$SCANTAB – Scan Table
Use $SCANTAB to create scan tables to be used with the $SCAN facility, defining
the allowed input and syntax for initialization parameter statements, selected
messages, and some operator commands. JES2 uses $SCANTAB to define the
initialization parameter statements, initialization options, selected messages, and
selected operator commands.

$SCANTAB entries are used to define the start of a user table ($SCANTAB
TABLE=USER...) or a JES2 table ($SCANTAB TABLE=HASP...), the end of a table
($SCANTAB TABLE=END) or an entry in a table ($PCETAB NAME=JJ2...). Each
entry defines:

v An operand allowed in the statement input. The operand can be either a keyword
operand (for example, OUTDisp= on the OUTCLASS(v) initialization statement)
or a coded-value operands (for example, BURST on the PRT(nnnn) initialization
statement). If you have need to display the value of an operand, use keyword
operands because $SCAN only displays this type of operand.

v How to find the correct control block and field(s) related to the operand.

v What the allowed input can be.

v How to convert the input for storing into the field(s) or convert the contents of the
fields for display. Because $SCANTAB generates only tables, not executable
code, register notation may not be used for any of the operands.

By default, the $SCANTAB macro does not expand the table entry in the assembly
listing. If you require this information use either of the following methods:

v Assemble your module with:
$MODULE SYSP=(PRINT,GEN,DATA,NOGEN,NOGEN)

v Set the SYSPARM keyword on the EXEC statement as:
EXEC IEV90,PARM=’SYSPARM=(PRINT,,,,)’

Note: The format description that follows breaks the macro into a boundary form
(the form that starts or ends a table) and an entry form (the form that
defines each table entry).

Format Description

Boundary Form

Entry Form

ÊÊ
symbol

$SCANTAB NAME=char-name
,CONV= NUM

HEX
CHARxxxx
FLAG
SUBSCAN
VECTOR
ALIAS

Ê

ÊÊ
symbol

$SCANTAB TABLE= HASP
(,NOENTRY)

USER
(,NOENTRY)

END
(DYNAMIC,pair-offset)

ÊÍ

$SCANTAB

270 z/OS V1R4.0 JES2 Macros

Ê
,CB= HCT

PCE
DCT
UCT
(TEMP,size)
PARENT

FAIL
,NOCB= SKIP

Ê

Ê
,CBIND=(field-name1,dsect1,instruction1,field-name2,...)

Ê

Ê
,CMDRDIR=cccc ,COMAUTH= JOB

SYSTEM
DEVICE

,COMREJ=REMOTE
Ê

Ê
NO

,FILTER= YES

Ê

Ê
,SUBSCRP= low-val,high-val ,HCT

(,UCT)
low,high,length ,HCT

,UCT

Ê

Ê
,SUBCHN=(field-name,dsect,operation),

Ê

Ê
SUBFLD=(field,controlblock,length)

Ê

Ê
,FIELD= field-name

(,length)
,DSECT=dsect-name

Ê

Ê
,RANGE=(v1,v2) ,VALUE=(v1,f1v1,f2v1,v2,f1v2,f2v2,...)

Ê

Ê
,CALLERS=(v1,v2,...)

Ê

Ê
,PRESCAN= routine-name,

(SET)... ,...
DISPLAY
FILTER
DELETE

Ê

Ê
,PSTSCAN=routine-name ,MCT

,SCANTAB= table-name ,UCT
(,ADDR)

,VCON

Ê

$SCANTAB

Chapter 3. JES2 Programmer Macros 271

Ê
1

,VCOUNT= nnn
(,IGNORE)

Ê

Ê
keyword-len

,MINLEN= min-keyword-len
,MSGID=nnn YES

,DISPKEY= NO

Ê

Ê
YES

,DISPLAY= NO
NO

,CRLF= YES

Ê

Ê
,ROUT= rout-cde1

(...,rout-cden)

Ê

Ê
,DESC= desc-cde1

(...,desc-cden)
,TEXT='ccc...c'

Ê

Ê
,TOKEN=cb-addr ,DISPERS=Rn ,ACTFLAG=flag-byte

Ê

Ê
BOTH

,ACTSET= ACTIVE
INACTIVE

BOTH
,ACTDISP= ACTIVE

INACTIVE

Ê

Ê
YES

,GENSET= NO
,LKUPFLD=arg ,SCAN=scan-type

Ê

Ê
,WARNING=byte-mask NO

,JOB= YES

ÊÍ

TABLE=
Specifies the start or end of a scan table.

Specify TABLE=HASP or TABLE=USER to start the corresponding table, and
optionally a second parameter of NOENTRY (for example,
TABLE=(USER,NOENTRY)) to indicate no ENTRY statement need be
generated for the label of the scan table.

DYNAMIC specifies that this is a dynamic table. The second and subsequent
positionals, pair-offset, specify the offset of the $PAIR in either the MCT or UCT
control block with which this table is to be associated. If the table pair in the
MCT or UCT is not defined via the $PAIR macro, an assembler MNOTE will be
issued.

Specify TABLE=END to terminate a scan table.

Other operands are ignored if TABLE is specified, and a label is required on the
$SCANTAB macro if a table is being started. If TABLE= and NAME= are both
not specified, only the mapping of an $SCANTAB entry is generated by the
macro.

NAME=
Specifies a character name for the scan table entry that indicates the scan

$SCANTAB

272 z/OS V1R4.0 JES2 Macros

keyword being defined (for example, PRINTER, CONSOLE, or JOENUM
parameter on the OUTDEF statement). If TABLE= and NAME= are both not
specified, only the mapping of an $SCANTAB entry is generated by the macro.

CONV=
Specifies the conversion to be done (and defines the valid input) when the
keyword defined by NAME= is encountered during a scan. CONV= is required if
$SCANTAB is used to generate a table entry. The following specifications are
valid:

LONG
indicates that if you also specified DISPALL=LONGONLY on this macro call,
this call will display on a DISPALL= request.

NUM
indicates the keyword represents a numeric value that is stored in binary.
An optional second and third positional (for example, CONV=(NUM,8,100))
define a multiple to round the input value to before storing and a value by
which the value of the keyword is multiplied before storing.

HEX
indicates the keyword represents a hexadecimal value that is stored in
binary. The optional second and third positional operands are the same as
CONV=NUM.

CHARxxxx
indicates the keyword represents a character value and defines the allowed
character input. If the first positional for CONV= is CHAR, any characters
not required for syntax within $SCAN are valid for the value unless a
specific list of characters is provided.

CONV=CHAR will allow right and left parenthesis as input for the scan
keyword defined by the $SCANTAB entry. CONV=(CHAR,x1,x2,x3,...,xn)
where x1-xn are specific characters allowed to be specified for the keyword
defined by the $SCANTAB entry and will allow right and left parenthesis if
they are in the character list (defined by x1-xn).

The rules for coding parenthesis are as follows:

v A right parenthesis will be accepted by itself

v A left parenthesis, if specified, must be part of a balanced parenthesis
pair.

If the first positional is CHARxxxx, for a 1- to 7-character string xxxx, the
input must fall within the character sets defined by the xxxx or be one of the
specific list of characters that may be optionally provided as described
below.

Within the xxxx specification:

v ‘A’ indicates the alphabetic character set A-Z.

v ‘F’ indicates the first character of input must be alphabetic.

v ‘G’ indicates that the characters ‘*’ and ‘?’ are valid.

v ‘H’ indicates hexadecimal to represent numbers 0 through 9 and
characters A through F. The value will be right-justified and padded with
zeroes unless A, S, F, J or additional positional operands are specified.

v ‘J’ indicates the first character of input must be alphabetic or special
national (JCL rules), even though the remaining input may have less
strict input rules.

$SCANTAB

Chapter 3. JES2 Programmer Macros 273

v ‘N’ indicates the numerics 0 through 9. The value will be right-justified
and padded with zeroes unless A, S, F, J or additional positional
operands are specified.

v ‘R’ indicates the character data should be right-justified rather than
left-justified.

v ‘S’ indicates the special nationals $, @, and #.

A specific list of allowed characters may be specified as the second, third,
and so on., positional operands for CONV. They may be specified as single
characters, or as 2-character hex values. The following is a valid example:
$SCANTAB NAME=CONCHAR, CB=HCT, FIELD=$CCOMCHR, CONV=(CHAR,,.,

[,4D,+,|,50,!,$,*,¬,-,/,%,_,?,:,#,@,=,"),
RANGE=(L’$CCOMCHR,L’$CCOMCHR),
CALLERS=($SCIRPL,$SCIRPLC,$SCDCMDS),
PSTSCAN=(PSTCNCHR,SET)

FLAG[,LIST][,n]
indicates the keyword that represents a flag value stored as the setting of
one or more bits within a single flag byte. The allowed values and
associated bit settings are defined by VALUE=.

LIST
An optional second positional parm to specify that JES2 should list all
matching values not only the first.

n An optional third positional parm that specifies the number of triplets in
the VALUE= list that JES2 will display. (JES2 scans all other
parameters for SET and FILTER calls.)

ALIAS
indicates the keyword is the alias of another keyword and SCANTAB=
specifies the label of the scan table entry mapping that other keyword.

VECTOR
specifies the keyword represents a vector of values. Another ‘level’ of
scan is used to process the vector of values which is specified within
parentheses. Therefore each value is defined, positionally, by another
scan table pointed to by SCANTAB=.

SUBSCAN
specifies the keyword requires another level of scanning to scan
suboperands. Unlike the CONV=VECTOR subscanning, a completely
recursive level of scanning is done, allowing suboperands of any of the
CONV types specified above, not just a vector of values. SCANTAB=
specifies the address of a doubleword containing the addresses of two
scan tables to pass to the recursive $SCAN call.

CB=
Specifies one of the ‘primitive’ control blocks known by $SCAN as the
control block containing the fields representing the value of the keyword, or
as the starting point for a control block search for that field. If a control
block is not found for a keyword during a scan, and a PRESCAN routine for
the keyword does not then supply the control block address, $SCAN issues
a $ERROR. CB= is required if CONV= is not specified as SUBSCAN,
VECTOR, or ALIAS unless PRESCAN= is specified.

HCT
indicates the JES2 HCT control block.

$SCANTAB

274 z/OS V1R4.0 JES2 Macros

PCE
indicates the current processor control element (PCE) at the time of the
scan.

DCT
indicates a JES2 device control table (DCT), found by scanning all the
DCTs for one whose DCTDEVN field corresponds to the NAME=
specified and the device number found during the scan.

UCT
indicates the installation-defined user control table (UCT), which is
pointed to by the $UCT field of the HCT.

TEMP
indicates a temporary control block should be allocated with a length
defined by the second positional operand.

size
Indicates the length (in bytes) of the control block

PARENT
indicates the control block determined at the scan level ‘above’ this
scan level should be used, i.e., when a control block is found for a
CONV=SUBSCAN or CONV=VECTOR keyword, that control block is
the parent control block for the resulting subscanning.

PRESCAN
indicates the routine where the control block is located.

$SCAN will not do any searching or validating prior to the prescan.

NOCB=
Specifies the action to take if JES2 couldn’t find a control block (that is, a
control block address of zero.)

FAIL
$HASP003 is issued with text REQUIRED CONTROL BLOCK(S) NOT
AVAILABLE. NOCB=FAIL is the default.

SKIP
The $SCANTAB is skipped.

Notes:

1. Prescan routines, if any, will be given a chance to locate the control
block before checking for a zero value.

CBIND=
Specifies how to find the control block required for this keyword, if the
primitive control block is not it. The search starts from the primitive control
block address, and performs a series of operations of fields within each
control block along the way. The fields used are defined by the first and
second operands and the operation is defined by the third operand in each
of a set of operand triplets defined to CBIND=. CBIND must be specified as
a list consisting of a multiple of these three operands.

field-name1
Identifies the name of the control block field that is to be compared to
the subscript name, until a match is found.

dsect1
Defines a DSECT name for the control block that contains the field.

$SCANTAB

Chapter 3. JES2 Programmer Macros 275

instruction1
Defines the operation to be performed, with the current control block
address, against the field.

The allowed operations are L (load), LA (load address), A (add), AH
(add halfword), AL (add logical), S (subtract), SH (subtract halfword),
and SL (subtract logical). If the operation specified is preceded by an
asterisk (for example, *LA), then any subscript indexing for the control
block search is done before this CBIND operation, rather than after all
CBIND operations. Subscript indexing is defined by the SUBSCRP=
operand.

CLEANUP=
Specifies routine(s) that should be given control to clean up resources
obtained by a prescan routine, even when a postscan routine does not get
control (such as an $SCAN error, filter mismatch, and so on).

CMDRDIR=
Specifies the response for the command is subject to redirection. The name
specified (cccc) is the 4-character identifier of a redirection group which
must correspond to the redirection group name (NAME=) on a $RDIRTAB
macro. If the CMDRDIR parameter is not coded, the command is not
subject to redirection.

COMAUTH=
Specifies the authority required to issue the specified command. Multiple
authority levels may be coded for this keyword. Values allowed for this
keyword are:

JOB
Job authority required.

SYSTEM
System authority required.

DEVICE
Device authority required.

COMENT=
Specifies the qualifier for command authorization. This is combined with the
qualifier on the $COMTAB for the ’command verb’ to provide the complete
resource name. For example, if the $T command specifies ’MODIFY’ as a
COMENT and the $SCANTAB macro for PRINTER specifies ’DEV’ as a
COMENT, then the complete resource name is ’MODIFY.DEV’. Note that
COMENT= on $SCANTABs which are not at the highest level of SCAN are
ignored.

COMPMSG=
Specifies whether (YES) or not (NO) JES2 should display the $HASP894
DISPLAY COMPLETE after the $D command processing completes. A
second parameter, which is optional, is used to specify the $BLDMSG
id of a different message to be displayed when completed.

COMREJ=
Specifies under which circumstances commands should be rejected. The
value allowed for this keyword is:

REMOTE
Rejects command if issued from a remote.

$SCANTAB

276 z/OS V1R4.0 JES2 Macros

DELTEXT=
Specifies the text that JES2 appends to an element’s display on a
DISPLAY/DELETE request.

DEFAULT
Indicates that JES2 will append the default text, - ELEMENT DELETED
on a DISPLAY/DELETE request.

NONE
Indicates that JES2 will not append any text on a DISPLAY/DELETE
request.

DISPALL=
Specifies if this keyword is displayed on a display-all subscan request.

YES
Display the keyword.

NO
Do not display the keyword.

LONGONLY
Display the keyword only if you either coded CONV=LONG on this
macro call or coded LONG=YES on a $SCAN call.

FILTER=
Specifies the type of filtering JES2 uses when processing this keyword.

(YES[ALWAYS,EQ,NEQ,GTLT,NODELIM,VORDER,NOVORDER,NOSET,
NOGENERIC])

Specified as a filter like YES but with any of the following positionals:

ALWAYS
This keyword is always a filter when specified on a SET call. When
ALWAYS is not specified on a SET call, you must precede it by a
division slash (⁄) to be a filter.

EQ
A valid filter delimiter of equal (=).

NEQ
A valid filter delimiter of not equal (¬= or <>).

GTLT
Valid filter delimeters other than equal or not equal are allowed.

NODELIM
They keyword will be accepted as a filter when no filter delimeter is
specified. This results in a match on a null VALUE= parameter.

VORDER
For CONV=VECTOR keywords, indicates that the vector elements
must be in the same order as specified on the filter for a match to
occur.

NOVORDER
For CONV=VECTOR keywords, indicates that the vector elements
may occur in any order.

NOSET
Indicates that the filter is not allowed on a SCAN=SET call.

$SCANTAB

Chapter 3. JES2 Programmer Macros 277

NOGENERIC
Generic characters * and ? are not to be treated as generics and
must match exactly on character comparisons.

If EQ, NEQ, or GTLT is not specified, the default is as if all three were
specified. If CONV=FLAG, the default is as if EQ and NEQ were
specified.

NO
If you specify FILTER=YES on the $SCANTAB for a command, you can
specify one or more selection criteria on the display command, and only
when the parameter is equal to the value specified will the elements be
displayed. If you specify FILTER=NO on the $SCANTAB for a
command, then you can only specify one parameter on a display
command. If you specify any other selection criteria, you will receive an
error message.

SUBCHN=
Specifies where to find the chaining information when the subscript of the
command or initialization statement is numeric. Used with the SUBFLD
keyword, SUBCHN will find the control block required for this keyword.

fieldname
Identifies the field in the control block that is used for chaining.

dsect
Specifies the name of the DSECT for the control block.

operation
Identifies the operation to be performed on the field specified. The
allowed operations are L (load), LA (load address), A (add), AH (add
halfword), AL (add logical), S (subtract), SH (subtract halfword), and SL
(subtract logical).

SUBFLD=
Specifies where to find the search argument or field to match with the
numeric subscript, when using the SUBCHN parameter.

field
Identifies the field in each control block in the chain that will be
compared to the numeric subscript, until a match is found.

dsect
Specifies the name of the DSECT for the control block.

length
Specifies the length of the field to be compared.

SUBSCRP=
Specifies an allowable subscript range for the input specifying this keyword.
If SUBSCRP is specified, the allowable input forms for $SCAN are
‘keyword(subscript)’ and ‘keywordsubscript’. SUBSCRP is specified as a list
of 2, 3 or 4 values, with the first being the lowest allowed subscript value
and the second being the highest allowed value. The first and second
operands must be numeric values with one exception; single character
alphanumeric subscripts can be used, with ‘A’ corresponding to value X'C1',
‘4’ to value X'F4', and so on.

The optional third value specifies an index value optionally used during the
search for the control block for this keyword. After (by default) or during the
CBIND processing in that search, the subscript value is used to index into

$SCANTAB

278 z/OS V1R4.0 JES2 Macros

the current control block to find the correct sub-block for the keyword. The
lowest subscript is assumed to correspond to the 0th sub-block and the
length of each sub-block is defined by the third positional value of
SUBSCRP.

The optional fourth value specifies that the “high” and “low” values are to be
used as offset values into the HASP (HCT) or USER (UCT) control tables.

FIELD=
Specifies the name and length of the field associated with the keyword
value in the specified control block. The field must be within the DSECT
specified by DSECT=, or must be an absolute offset if DSECT=0 is
specified. The length is defined by the second positional parameter, and
defaults to the assembler-defined length of the field label. FIELD= is
required unless CONV= is SUBSCAN, VECTOR or ALIAS.

DSECT=
Specifies the DSECT name required to resolve the field specified by
FIELD= in the control block found by the $SCAN search. If FIELD= is
specified as an absolute offset into the control block, DSECT should be
specified as DSECT=0.

RANGE=
Specifies the allowed range for the input. For keywords for which CONV is
NUM, HEX, or CHARN RANGE specifies a binary range. For keywords for
which CONV is CHARxxxx, for CHARxxxx not equal to CHARN, RANGE
specifies a length range. RANGE and VALUE are mutually exclusive.

RELATED=
Specifies a list of related $SCANTAB entries. You should use this
parameter when you modify a $SCANTAB parameter that directly affects
the value of another $SCANTAB call.

SSOPT=
Specifies whether (YES) or not (NO) a subscript specification is optional on
all $SCAN call types.

For SCAN=DISPLAY calls, the subscript specification is always optional
regardless of the value you specified here.

If you specify SSOPT=YES, JES2 assumes a subscript of (*) when a
subscript is not specified.

VALUE=
Specifies the allowed specific values a keyword may have. VALUE is used
to limit input to only certain values, instead of using RANGE to limit the
input to a range of values. RANGE and VALUE are mutually exclusive.

For keywords for which CONV= is not specified as FLAG, this keyword is
specified as a list of allowed values. Note that the input must match the
VALUE= specification exactly. For example, if the value 000293 is specified
as input, it is within the allowed range for RANGE=(66,400), that is between
66 and 400, but it does not match the VALUE=(36,2,99,293,4) specification,
exactly.

For CONV=FLAG keywords, VALUE is specified as a list making up a set of
triplets of input, that is VALUE=(a1,b1,c1,a2,b2,c2,...). For each set of three
operands, as shown, the first (a) is the allowed value the keyword may
have, the second (b) is a flag byte setting to ‘or’ on in the FIELD if the
keyword is given this value, and the third (c) is a flag bytes setting to ‘and’

$SCANTAB

Chapter 3. JES2 Programmer Macros 279

off in the FIELD. For example, to implement a keyword with values of YES
or NO, which is represented by a single flag bit setting specify the following:
CONV=FLAG,VALUE=(YES,YESFLAG,FF,NO,0,FF - YESFLAG)

If the keyword have no input value, i.e., there is value in the keyword being
specified alone, VALUE should consist of one triplet with the first operand
null.

CALLERS=
Specifies one or more caller ids (in a parenthesized list) for which this scan
table entry is to be used. If CALLERS is not specified, the table entry is
used for any $SCAN caller. This operand is useful, for example, when a
scan table is to be used for multiple parameter statement purposes and not
all keywords are valid in every case. Note that $SCAN supports multiple
entries specified in a scan table for the same NAME= keyword with different
CALLERS= specifications. Valid callers are:

Valid Callers Identifies the:
$SCOPTS JES2 initialization options (for example, COLD, WARM,

REQ, NOREQ)
$SCIRPL JES2 initialization statements
$SCIRPLC console-issued commands during JES2 initialization
$SCDCMDS display commands in HASPCOMM
$SCSCMDS set commands in HASPCOMM
$SCDOCMD short form(s) of the display commands
$SCSTCMD start commands
$SCPCMDS stop commands
$SCDDIAL dialog display form
$SCSDIAL dialog set form
$SCECMDS reset commands
$SCACMDS add commands in HASPCOMM
$SCRCMDS delete commands in HASPCOMM
$SCLTCMD Output long display
$SCECMDA RESET COMMANDS (single)
$SCZCMDS HALT commands
$SCHCMDS HOLD commands
$SCRLCMD RELEASE commands
$SCCCMDS CANCEL commands
$SCTOCMD $TO commands
$SCCOCMD $CO commands
$SCPOCMD $PO commands
$SCOCMDS $O command
$SCLOCMD Output short display
$SCLCMDS $L command

PRESCAN=
Specifies the name of a routine(s) to be entered just after determining the
parameter input contains this keyword and before scanning the input any
further. The routine does not have to be in the same CSECT as the table.
Register 1 points to the scan work area (SCWA) on entry to the routine and
the routine can change the SCWA fields and use return codes to direct the
actions of $SCAN. An optional second positional parameter of SET,
DISPLAY, FILTER, or DELETE on PRESCAN after each PRESCAN routine
name indicates that the PRESCAN routine should be called only for the
specified $SCAN calls. You may specify more than one of these parameters
for each routine name.

$SCANTAB

280 z/OS V1R4.0 JES2 Macros

PSTSCAN=
Specifies the name of a routine(s) to be entered after all scanning (including
possible subscanning) is done for this keyword. PSTSCAN= and the routine
interface are the same as those for PRESCAN=.

SCANTAB=
Specifies another scan table(s) or table entry required when scanning this
keyword. For CONV=ALIAS, it specifies the address of another scan table
entry defining the keyword of which this keyword is an alias. For
CONV=VECTOR, it specifies the address of another complete scan table
defining the values allowed for each element of the vector. For
CON=SUBSCAN, it specifies the address of a doubleword containing the
addresses of two complete scan tables, for example, one user scan table
and one JES2 scan table, to be used in the recursive $SCAN call that
performs the subscanning required.

If CONV=VECTOR or CONV=SUBSCAN is specified, the pointer to the next
set of scan tables is calculated as an offset into either the MCT or UCT.
This is specified by the second positional operand on this keyword. For
example:
$SCANTAB SCANTAB=(MCTPRTU,MCT)...

generates (MCTPRTU – MCT) for the offset into the $MCT of the scan
table pair.
$SCANTAB SCANTAB=(UCTPRTU,UCT)...

generates (UCTPRTU – UCT) for the offset into the $MCT of the scan table
pair.
$SCANTAB SCANTAB=(OWNPAIR,ADDR)...

generates (OWNPAIR – ADDR) as the address of the table pair.
$SCANTAB SCANTAB=(OWNPAIR,VCON)...

generates (OWNPAIR – VCON) as the VCON of the table pair.

VCOUNT=
Specifies the number (1-255) of vector elements this scan table entry
defines. VCOUNT is ignored unless specified for an entry in a scan table
specified to SCANTAB= for a CONV=VECTOR keyword. It allows a single
scan entry to define multiple elements of a vector, with the associated fields
for the elements being FIELD, FIELD plus the field length, FIELD plus twice
the field length, and so on. The default is 1.

An optional second positional parameter of IGNORE in VCOUNT indicates
that null input for vector elements is allowed and the associated fields
should not be changed in any way.

OBS=
Specifies whether the keyword specified for NAME= is to be considered
obsolete (the default is OBS=NO). If OBS is specified as YES, $SCAN
should consider it to be an error if this keyword is found during a scan, but
return a less severe return code and message to the caller.

MINLEN=
Specifies the minimum character length of the keyword defined by this
$SCANTAB entry that may be used to reference the keyword in parameter
input. For example, if NAME=FORMS is specified, and MINLEN=2, then:
FO, FOR, FORM, and FORMS are valid keyword references; F, FOX, and

$SCANTAB

Chapter 3. JES2 Programmer Macros 281

FORMSX are invalid. If MINLEN= is not specified, the valid keyword
specification is the entire keyword; no abbreviated forms are allowed.

MSGID=
Specifies the 3-digit message ID for the $HASPnnn message identifier that
is used when a SCAN=DISPLAY includes a display line in a $SCAN call.
This message ID is ignored by $SCAN except at the highest level of
scanning. For example, it is used for the PRINTERnn statement, but it is
ignored for the FORMS= keyword on the PRINTERnn statement.

DISPKEY=
Specifies whether (YES) or not (NO) the keyword name is displayed as part
of the $SCANTAB output. If YES is specified, the keyword specified by
NAME= on this macro is displayed with its value. If NO is specified, only the
value assigned to the keyword is displayed.

TEXT=
Specifies the text string produced by this $SCANTAB call if
SCAN=(DISPLAY,ALL) is specified on the $SCAN macro instruction. You
can specify a character string up to 255 characters; enclose the string in
single quotes.

Note: If TEXT= is specified, do not also specify NAME= or TABLE=.

TOKEN=
Specifies the address of a control block that is passed to the $SCAN
routines, PRESCAN, POSTSCAN, and DISPLAY.

DISPLAY=
Specifies whether (YES) or not (NO) the value assigned to a keyword is
displayed as part of the $SCANTAB output. If YES is specified, the value
associated with the keyword specified by NAME= on this macro is
displayed. If NO is specified, the value associated with the keyword
specified by NAME= on this macro is not displayed.

CRLF=
Specifies whether (YES) or not (NO) the line of message text added by this
SCANTAB call is displayed following a carriage return and line feed (that is,
displayed on a new line) during display processing. The default, NO,
specifies the additional text is appended immediately after the existing
message text.

ROUT=
Specifies the route codes to which this message is to be routed. These
values are passed to the display routine for processing. This route code is
ignored by $SCAN except at the highest level of scanning. If you provide
more than one code, separate each by a comma and enclose the list in
parentheses.

DESC=
Specifies the descriptor codes for this message that are passed to the
display routine for processing. This descriptor code is ignored by $SCAN
except at the highest level of scanning. If you provide more than one code,
separate each by a comma and enclose the list in parentheses.

DISPERS=
Specifies a list of flag bits that must be set on in the flag byte specified on
the DISPER= keyword for the call to the SCAN macro if this SCANTAB is to
be used. If the required bits are not set on, this SCANTAB will not be used.

$SCANTAB

282 z/OS V1R4.0 JES2 Macros

ACTDISP=
Specifies the activity condition required for display of this keyword.. ACTIVE
indicates display only in the case of activity; INACTIVE indicates display in
case of inactivity; and BOTH indicates display regardless of activity. the
ACTFLAG bit is used to determine whether or not there is activity.
ACTDISP=BOTH is the default.

ACTFLAG=
Defines a field in the control block pointed to by CB, CBIND, and
SUBSCRP= that is used to determine if there is any activity on the logical
(for example, node) or physical (for example, printer) device. If any bits are
on (set to 1), activity is assumed and the ACTSET= keyword determines if a
set-type $SCAN is permitted.

ACTSET=
Specifies the activity condition required for a set-type $SCAN call. ACTIVE
indicates activity is required; INACTIVE indicates that inactivity is required;
and BOTH indicates a set-type $SCAN call is allowed regardless of activity.
The ACTFLAG bit is used to determine whether or not there is activity.
ACTSET=BOTH is the default.

GENSET=
Specifies whether (YES) or not (NO) a set-type $SCAN call is permitted for
generic requests. A generic request is one that includes an asterisk (*)
within the symbolic subscript, for example, PRT(99-*). GENSET= does not
affect the processing of range requests, for example, PRT(99-999).
GENSET=YES is the default.

LKUPFLD=
Specifies an argument used to locate a control block. As part of a CB= or
CBIND= search, the LKUPFLD= specification is used to match the specified
symbolic subscript. If CB= and CBIND= are not used, LKUPFLD= is used
as the search argument for the control blocks defined by SUBSCRP=.

SCAN=
Specifies the call types that can be used by $SCAN to call $SCANTAB. The
list of valid calls is all the scan call work area (SCWA) equates from the
SCWATYPE field, for example SCAN=SCWASET+SCWADISP+SCWACR
allows set-, display-, and create-type $SCAN calls. If
SCAN=SCWASET+SCWACR is specified, display-type calls are invalid. If
SCAN= is not specified, all call types are allowed.

WARNING=
A one-byte warning mask that indicates when this scan table entry should
be halted and a warning-level diagnostic message sent to the caller. This
warning mask will be compared with the mask specified by WARNMSK= on
the $SCAN macro call. If any bits match, the SCAN process will be halted.

JOB=YES | NO
Specifies whether a display of this table entry by a subsequent $SCAN
macro is to include a job identifier. Code this parameter only on high-level
$SCANTAB entries.

YES
Include the job identifier in the display.

Code YES only if you are defining a table entry that modifies an
IBM-defined command. For a list of the IBM-defined commands that
you can modify through the $SCANTAB macro, see Table 9 on page

$SCANTAB

Chapter 3. JES2 Programmer Macros 283

366. If you code YES, you must have previously set PCE field PCEJQE
to point to the JQE that corresponds to the JOE to be displayed.

NO
Do not include the job identifier in the display. This is the default.

Environment
v JES2 main task or during initialization and termination.
v $WAITs can occur.

$SDUMP – Take a SDUMP of Storage
Use $SDUMP to dump the storage of selected address spaces.

Format Description

TITLE=
Specifies the title of the dump. You can specify the title of the dump as straight
text within quotes or you can supply a symbol that identifies the beginning of
the textual title or you can supply a register whose contents is the address of
the textual title. If you supply a symbol or register, the symbol or register must
point to a one byte length field followed by the text. If TITLE is not specified a
default title for the dump is used.

ASIDLST=
Specifies a list of asids (up to two) associated with the address spaces to be
dumped besides the home address space if HOME=YES. Label1 and label2
must define halfwords that contain the asids. Rn and Rm are two different
registers that contain the asids in the right-most half of each register. The
left-most half of each register must be zero.

HOME=
Specifies whether the home asid is dumped. HOME=YES is the default
indicating that the home asid is to be dumped.

ERROPT=
Specifies the action to be taken should the dump fail. ERROPT=RETURN
indicates that when the dump fails, return to the caller should take place.
ERROPT=WAIT indicates that a WTOR is to be issued to the operator and the
$SDUMP processing is to wait for an appropriate reply. ERROPT=RETURN is
the default.

ÊÊ
symbol

$SDUMP
TITLE= 'text'

symbol
(R1)

,ASIDLST= (Rn,Rm)
(label1)
(label2)

Ê

Ê
RETURN

,ERROPT= WAIT
YES

,HOME= NO
NO

,APPEND= YES

Ê

Ê
,AFFIELD= ACTIVE

address

ÊÍ

$SCANTAB

284 z/OS V1R4.0 JES2 Macros

APPEND=
Specifies whether the title supplied with TITLE= is to be appended to the
default title. APPEND=NO is the default and indicates that the title supplied is
not to be appended to the default title.

AFFIELD=
Specifies the address of the affinity field that identifies the members to be
dumped or ’ACTIVE’ meaning use XMAMEMUP (all active members of the
MAS). If not specified,.only this member is dumped.

Environment
v Main task.
v MVS WAIT can occur (if ERROPT=WAIT).

$SEAS – Security Authorization Services
The $SEAS macro is the JES2 interface to the Security Authorization Facility (SAF).
The macro determines the environment invoking the macro and then either calls
SAF directly or invokes a service routine to call SAF. Before passing control to SAF,
JES2 invokes exit 36. Before control returns to your routine, JES2 invokes exit 37.

Format Description

CODER=JES2|USER
Specifies whether IBM-supplied or installation-written code is invoking this
macro.

ÊÊ
symbol

$SEAS
USER

CODER= JES2

Ê

Ê
,CB= (symbol, (Rn))

addrx ,COND
,ENVIRON= INIT

SUBTASK

Ê

Ê
0

,FUNCODE= nnn
0

,JOBMASK= (Rn)
addr

,REQUEST= AUTH
CMDAUTH
EXTRACT
TOKNBLD
TOKNMAP
TOKNXTR
VERIFYC
VERIFYD
VERIFYX

Ê

Ê
REGULAR

,PRIORITY= LOW
HIGH

YES
,WAIT= NO

Ê

Ê
INIT

,WAVADDR= addr , NOINIT
()

ÊÍ

$SDUMP

Chapter 3. JES2 Programmer Macros 285

Default: USER

CB=
Specifies the ID and address of the control block $SEAS places in the $WAVE.
The parameters for CB= are:

symbol
A symbolic that points to the 4-byte name of a JES2 control block for this
request.

addrx|(Rn)
The address or a register that contains the address of the control block
specified in symbol.

COND
This parameter is allowed only when the second parameter is a register.
JES2 verifies that the register specified contains an address before
updating the $WAVE with the control block name and address.

ENVIRON=INIT|SUBTASK
Specifies whether this call is being made from a subtask (SUBTASK) or during
initialization (INIT). Code this parameter only if you issue $SEAS from either of
these two environments. If invoking this macro from a subtask, you must
specify ENVIRON=SUBTASK to override the assembly environment of the
module.

Note: If you do not specify ENVIRON=, the default is the current assembly
environment.

FUNCODE=0|nnn
Represents the location and/or type of call. When you specify CODER=USER,
this parameter is optional and can be between 0 and 255. IBM-supplied
routines specify values of 1 to 21 for this parameter, so you should avoid these
codes unless you create calls similar to those supplied. Your values for
FUNCODE= should start at 255 and work downward to avoid conflicting with
the IBM-defined values. Exits 36 and 37 use this code to determine the location
and type of call.

When you specify CODER=JES2, this parameter is required and must be
between 1 and 20. The meanings of FUNCODE= in IBM-supplied routines are:

Decimal Value Meaning Related Control
Block

0 Reserved for user code.

1 Initialize security environment. SFI

2 Security environment create. JCT

3 Security environment delete. JCT

4 Extract security information for this environment. SJB

5 SYSIN data set create. IOT

6 SYSOUT data set create. IOT

7 SYSIN data set open. SDB

8 SYSOUT data set open. SDB

9 Process SYSOUT data set open. SDB

10 Process SYSOUT data set select. PSO

11 TSO/E cancel. JCT

$SEAS

286 z/OS V1R4.0 JES2 Macros

Decimal Value Meaning Related Control
Block

12 Command authorization. none

13 Printer data set select. PDDB

14 Data set purge. IOT

15 Notify user token extract None

16 Token build. SFI

17 RJE signon, NJE source for command authorization. SWEL

18 Device authorization. PCE

19 NJE SYSOUT data set create. SFI

20 Reserved None

21 Reserved None

22 Update of JESNEWS. SJB

23 Build JESNEWS token. IOT

24 Subtask to create access control environment
element (ACEE) for general subtasks.

None

25 Audit for job in error. None

26 Authorization for $DESTCHK. DCW

27 SYSOUT data set create for trace. IOT

28 SYSOUT data set create for system job data sets
(for example, JOBLOG).

SFI

29 SYSOUT data set create for JESNEWS. IOT

30 Transmit or offload of SYSOUT. PCE

31 VERIFYX for receive or reload of SYSOUT. SFI

32 Transmit or offload of job. PCE

33 Reserved None

34 Spool browse data set open SDB

35-255 Not in use. Not in use.

JOBMASK=0 | (Rn) | addr
Specifies the address, or a register that contains the address, of the JOBMASK
used by exits 36 and 37, if needed. This parameter is optional.

Default: 0

REQUEST=AUTH | CMDAUTH | EXTRACT | TOKNBLD | TOKNMAP | TOKNXTR
| VERIFYC | VERIFYD | VERIFYX

This required parameter specifies the type of request passed to SAF. These
requests correspond to the RACROUTE macro requests: AUTH, EXTRACT,
TOKENBLD, TOKENMAP, TOKENXTR, VERIFY ENVIRON=CREATE, VERIFY
ENVIRON=DELETE, and VERIFYX. CMDAUTH corresponds to the MVS
console command authorization macro. An explanation of these requests
appears in z/OS Security Server RACF Macros and Interfaces and z/OS MVS
Programming: Assembler Services Reference ABE-HSP.

PRIORITY=LOW | REGULAR | HIGH
Specifies the priority of the request. Reserve using high priority for requests that
need the best performance. For example, validation of a real-time transaction

$SEAS

Chapter 3. JES2 Programmer Macros 287

probably deserves high priority. A small batch job opening a SYSIN data set,
does not. PRIORITY= is valid only in the JES2 main task.

Default: Regular

WAIT=YES|NO
Specifies at what point in its processing $SEAS is to return. WAIT=NO queues
the request and returns immediately to the caller. This is useful when initializing
a work access verification element ($WAVE).

If you specify WAIT=YES and the address of a previously initialized $WAVE,
$SEAS waits until the request is processed.

WAIT= is valid only in the JES2 main task.

WAVADDR=
addr

Specifies the address of the Work Access Verification Element ($WAVE).
INIT

Initializes the $WAVE fields with the values specified on this macro and
instructs SAF to begin its processing.

NOINIT
Does not initialize the $WAVE. If you specify NOINIT, you must initialize the
appropriate fields in the $WAVE. Normally, use NOINIT on a second $SEAS
call after initializing the $WAVE.

If you code NOINIT, specify only the $WAVE address and ENVIRON=.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful (no errors). SAF granted authorization for

access.
4 SAF was unable to make an authorization decision.
8 SAF denied authorization for access or a subtask failure prevented

SAF from making an authorization decision.
12 $SEAS could not fulfill a $GETWORK request for a $SQD. This call

was made with a WAIT=NO; calls that can tolerate a WAIT=YES
will not receive a return code of 12.

Usage Notes
See “Invoking the Security Authorization Facility (SAF)” on page 397 for a brief
discussion on verifying access to resources and using $SEAS to invoke SAF.

Users of the $SEAS macro are responsible for setting up the RACROUTE
parameter list in the WAVE. The $SEAS service will add to the parameters passed,
the SUBSYS= keyword. The value passed in for SUBSYS consists of the JES2
subsystem name concatenated with the three character JES2 Version number (for
example, JES2313). Users of $SEAS must either specify DECOUPLE=YES (if
supported by their security product) or define the SUBSYS value to their security
product.

Environment
v All environments.
v $WAIT can occur.
v MVS WAIT can not occur. (However, if JES2 was unable to attach any general

purpose subtasks during initialization, an MVS WAIT will occur.)

$SEAS

288 z/OS V1R4.0 JES2 Macros

$SEPPDIR – Create a User Peripheral Data Information Record (PDIR)
Use $SEPPDIR to send a PDIR to an output device immediately before sending a
separator. The PDIR is a required control record that is sent to a SNA/RJE remote
that is using its spooling capability to allow data set printing. The PDIR record is
used to describe the data set (every output record, separator pages, and cards)
being sent. If no separator is being sent, do not use this macro instruction. JES2
sends a PDIR preceding the print header and trailer separators. Also, JES2 sends a
PDIR preceding a punch separator; no PDIR is sent following a punch file. This
macro supports the separator exits (Exit 1 and Exit 15) in modules HASPPRPU. It
is not used for the FSS separator exit (Exit 23) in module HASPFSSM.

Format Description

The specified register contains the address of a JES2 buffer.

Environment
v Main task.
v $WAIT can occur.

$SETAFF – Set Affinity
The $SETAFF macro provides an interface to set and test affinity fields that are
independent of the number of members supported. This macro is intended for use
by:

v Exit 20 (end of input processing) to set the affinity for a given job to a specified
member.

v Exit 44 (end of conversion) to set the affinity for a given job to a specified
member.

v Exit 14 (job queue work select) to determine if the given job can execute on the
specified member.

The $SETAFF macro deals with three types of information:
v The full affinity mask (AFFIELD)
v The affinity token (AFTOKEN)
v The id number (ID), a number from 1 to 32

ÊÊ
symbol

$SEPPDIR addrx
(R1)

ÊÍ

$SEPPDIR

Chapter 3. JES2 Programmer Macros 289

Format Description

REQUEST= Requested function to be performed.

ANY Set an affinity of ANY in the field passed as
AFFIELD.

CLEAR Clears out the field passed as AFFIELD.

REVERSE Reverses the setting of the affinity field. That is, all
members that were in the field are to be removed,
and all members that were not in the field are to be
added.

TESTANY Tests the affinity field to determine whether or not
the affinity field represents an affinity of ANY.

TESTNONE Tests the affinity field to determine whether or not
the affinity field is completely empty.

TEST Tests the affinity field to determine whether or not
the member identified by either ID or AFTOKEN is
represented in the affinity field.

ADD Adds the member identified by either ID or
AFTOKEN to the specified affinity field.

REMOVE Removes from the affinity field the affinity for the
member identified by either ID or AFTOKEN. See
note.

MOVE Sets the affinity field to reflect the affinity of the one
member identified by either ID or AFTOKEN. See
note.

ÊÊ
symbol

$SETAFF Ê

Ê REQUEST=
ANY ,AFFIELD=mask
CLEAR
REVERSE

TESTANY ,AFFIELD=mask PASS=br
TESTNONE ,FAIL=br

FAIL=br
,PASS=br

TEST ,AFFIELD=mask ,ID=mem-num PASS=br
,AFTOKEN=token ,FAIL=br
,AFTOKEN=token,ID=mem-num FAIL=br

,PASS=br

ADD ,AFFIELD=mask ,ID=mem-num
REMOVE ,AFTOKEN=token
MOVE ,AFTOKEN=token,ID=mem-num

Ê

Ê
,REGAREA=register-area

ÊÍ

$SETAFF

290 z/OS V1R4.0 JES2 Macros

RETURN Builds an affinity token from the passed ID field and
returns it in the AFTOKEN field.

AFFIELD= The full affinity field (32-bit word) that is to be acted upon, with each
bit representing a member in the MAS complex. Any combination of
bits may be set. The specification can be a RX-type address or a
register (2-12). This field is required for all functions except
REQUEST=RETURN.

A job’s affinity mask is stored in the $JQE (JQESAF).

AFTOKEN= The affinity token to be used as input to test or set the appropriate
bit in the AFFIELD. (The format is a 1-byte mask, plus a 2-byte
offset into entire mask. This allows affinity fields to increase in size
without increasing the size of the token.) The specification can be
an RX-type address or a register (2-12).

The local member’s affinity token is in the $HCT ($AFFINTY).
Tokens for other members stored in the $QSE (QSEAFFIN). Tokens
can be derived from ID by using $SETAFF REQUEST=RETURN, or
indirectly by using REQUEST=ADD, REMOVE, MOVE or TEST.

ID= The member number from 1 to 32 used as input that is to be
converted to the affinity token format. It will either be returned in the
AFTOKEN field or used to perform the requested function on the
affinity field. If you are using register notation, the member number
must be in the right most portion of the register. The RX-type
address, is the one byte field that contains the member number.

The ID is also used in the $JOE (JOEBUSY), and $JQE
(JQEBUSY, JQEJLOK) for serialization to indicate a busy or locked
condition.

PASS= Specifies a label to be branched to or a register to be branched on
if the test requested by either REQUEST=TEST,
REQUEST=TESTANY or REQUEST=TESTNONE is true.

FAIL= Specifies a label to be branched to or a register to be branched on
if the test requested by either REQUEST=TEST,
REQUEST=TESTANY or REQUEST=TESTNONE is false.

REGAREA= A 16-byte area that contains an RX-type address indicating where
registers 0,1,14,15 are to be saved and where they are restored
from.

CAUTION:

This macro may destroy the contents of R0, R1, R14 and R15
unless you also provide the REGAREA= parameter.

Note: If both ID= and AFTOKEN= are specified for a request of ADD, REMOVE,
TEST or MOVE, the ID is first converted into a token and placed in the field
pointed to by AFTOKEN=. After this conversion, the requested function is
performed.

Environment
v Main task, subtask, FSS and user address space.

$SETAFF

Chapter 3. JES2 Programmer Macros 291

Examples
The following examples show how to do some simple tasks with $SETAFF.

1. Test a job for affinity to this member:
$SETAFF REQUEST=TEST, Test affinity

AFFIELD=JQESAF, of job’s affinity against
AFTOKEN=$AFFINTY, the local member’s token.
FAIL=NOT_HERE If not here, branch ...

NOT_HERE DS 0H

2. If no affinity specified, set the affinity to the local member:
$SETAFF REQUEST=TESTNONE, Is the affinity field empty?

AFFIELD=JQESAF, in the job’s JQE ?
FAIL=NO_SET No, don’t set default

$SETAFF REQUEST=MOVE, Otherwise,
AFFIELD=JQESAF, Set default affinity of the
AFTOKEN=$AFFINTY active member

NO_SET DS 0H

3. Determine if another member (on which job is executing) is up.
SLR R4,R4 Clear R4
ICM R4,B’0001’,JQEBUSY Get member # on which job is executing
L R2,$XMASADR Get XMAS addressability

$SETAFF REQUEST=TEST, Test to see if this
AFFIELD=XMAMEMUP-XMA(,R2), member is active,
ID=(R4), if no, go return
FAIL=MEM_NOT_UP

$SETIDAW – Set Indirect Data Access Word (IDAW)
Use $SETIDAW to store the data buffer address in the xxxIDAWn fields of the
specified control block. By default, this macro instruction stores the address passed
in register 0 into the xxxIDAW1 field. Use the CBPREX= keyword to specify xxx.
$SETIDAW then sets xxxIDAW2 and xxxIDAW3 fields to the next 2K page
boundary addresses when further IDAWs are required.

Format Description

DATA=
Specifies the label of, or a register containing, the data buffer address to be
placed into the xxxIDAWn fields of the specified control block.

R=
Specifies a work register to be used during $SETIDAW processing. R=(R0) is
the default.

ÊÊ
symbol

$SETIDAW
(R0)

DATA= label
(Rn) (R0)

R= (Rn)

Ê

Ê
SDB

CBPREX= 'xxx-value'

ÊÍ

$SETAFF

292 z/OS V1R4.0 JES2 Macros

CBPREX=
Specifies the 3-character prefix (xxx) of the control block to be used to name
the xxxIDAW1, xxxIDAW2, and xxxIDAW3 fields. CBPREX=SDB (subsystem
dataset block) is the default.

Environment
v All environments.
v $WAIT cannot occur.

$SETRP – Set Recovery Processing Options
Use $SETRP in a recovery routine to indicate how control will be received when the
$RETRY routine is complete. Specifies if and how recovery is to take place.

Format Description

RECOVER
Specifies that recovery is to take place. All functions are to resume as normal at
the address specified by the RESUME= parameter.

RESUME=
Specifies where normal processing is to resume when error recovery is
successful. This parameter is required when RECOVER is specified.

TERMINATE
Specifies that an abend is to take place and no recovery is to be attempted.

PERCOLATE
Specifies that this particular recovery attempt was unsuccessful but that
termination is not to take place. Each of the higher level recovery routines is to
be entered until either there are no more routines (an abend occurs) or
recovery is successful (all functions resume as normal).

Note: $SETRP assumes addressability to the error recovery area (ERA) that is
associated with the error that caused the recovery routine to be entered.
Therefore, be certain to add the $ERA DSECT to the $MODULE macro for a
routine for which you provide error recovery.

Environment
v Main task.
v $WAIT cannot occur.

$SJBFIND – Locate a Subsystem Job Block (SJB)
Use $SJBFIND to locate a specific subsystem job block (SJB). On return to the
caller, R1 contains the address of the SJB. If TYPE=FIRST or TYPE=LAST, R0 will
contain the address of the HASP address space block (HASB).

ÊÊ
symbol

$SETRP RECOVER,RESUME=resume-relexp
()

TERMINATE
PERCOLATE

ÊÍ

$SETIDAW

Chapter 3. JES2 Programmer Macros 293

Format Description

TYPE=
Specifies the type of SJB to locate, as follows:

Type Meaning

LOJ Life-of-job SJB

(LOJ,FIRST) Specifies the life-of-job SSIB SJB and if not
there, the first SJB for the address space.

SSIB Subsystem information SJB

(SSIB,FIRST) Specifies the caller’s SSIB SJB and if not there
the first SJB for the address space.

FIRST First SJB of the address space

LAST Last SJB of the address space

ASID=
Specifies the address space identifier (ASID) that is to be used if TYPE=FIRST
or TYPE=LAST is also specified. If label is specified, it must indicate a halfword
area. The default is the current ASID.

ERRET=
The address to branch to if an error occurs.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 SJB found
4 SJB not found
8 SJB not found because HASB is missing.
12 SJB not found because subsystem names are different.

Programming Requirement
Be certain to include $TRE on the $MODULE call. The $SJBFIND calls $GETHP
which requires this mapping.

Environment
v User environment.
v MVS WAIT cannot occur.

ÊÊ
symbol

$SJBFIND TYPE= LOJ
(,FIRST)

SSIB
(,FIRST)

FIRST
LAST

Ê

Ê
,ASID= label

(Rn)
,ERRET= label

(Rn)

ÊÍ

$SJBFIND

294 z/OS V1R4.0 JES2 Macros

$SJBLOCK – Lock a Specific Subsystem Job Block (SJB)
Use $SJBLOCK to lock or release a specific subsystem job block (SJB).

Format Description

ADDR=
Specifies the label or a register that contains the address of the SJB to be
locked. ADDR=(R10) is the default.

NONDISP=
Specifies that a TYPE=GET requestor wants control to be returned (RETURN)
or abnormally terminated (ABEND) if the SJB lock is held by a non-dispatchable
task.

TYPE=
Specifies whether to obtain (GET) of free (FREE) the SJB lock. TYPE=GET is
the default.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Successful completion, SJB lock obtained or freed
4 SJB lock already held by the caller
8 Disastrous error, specified SJB is terminating, lock is not obtained.
12 SJB lock owner is currently non-dispatchable, lock is not obtained.

Environment
v User environment.
v MVS WAIT cannot occur.

$SJBRQ – Requeue a Specific Subsystem Job Block (SJB)
Use $SJBRQ to call the $SJBRQ service routine to requeue the SJB to the $SVJ
queue specified by the calling routine.

Format Description

ÊÊ
symbol

$SJBLOCK
(R10)

ADDR= label
(Rn)

ABEND
,NONDISP= RETURN

Ê

Ê
GET

,TYPE= FREE

ÊÍ

ÊÊ
symbol

$SJBRQ
(R10)

ADDR= label
(Rn)

(R1)
,QADDR= label

(Rn)

ÊÍ

$SJBLOCK

Chapter 3. JES2 Programmer Macros 295

ADDR=
Specifies the label or a register that contains the address of the SJB to be
requeued. ADDR=(R10) is the default.

QADDR=
Specifies the label or a register that contains the address of the new $SVJ
queue to receive the SJB.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Successful completion, SJB requeued.
4 SJB not requeued, no queue header available.

Environment
v User environment.
v MVS WAIT cannot occur.

$SSIBEGN – Begin a Subsystem Interface (SSI) Function
Use $SSIBEGN to define the beginning of a subsystem interface (SSI) function.
This macro instruction calls all necessary routines needed to initialize the
subsystem interface’s function.

This macro calls the PRESSI routine to determine if this SSI request needs to be
processed. This determination prevents unnecessary processing, such as obtaining
storage when it is not required. This macro is particularly useful to prevent
performance degradation during MVS broadcast calls. PRESSI determines whether
the calls need to be serviced by the subsystem; if it does not, control is immediately
returned to the caller. Therefore, this macro will allow the SSI to bypass
unnecessary recovery and initialization processing.

The PRESSI routine runs in an extremely limited environment; note the following
restrictions:
v Save area services are not available
v Alteration of registers R11, R13, and R14 is not allowed
v There is no recovery environment
v PRESSI runs under the key and authority of the caller.

Format Description

RELATED=
Specifies the label of the $SSIEND macro instruction which ends the SSI
function which this $SSIBEGN starts.

DESC=
Specifies a character string that describes the SSI function you are defining.
You can specify up to 38 characters and must enclose the string within single

ÊÊ
symbol

$SSIBEGN RELATED=label ,DESC= 'string' Ê

Ê
,PRESSI= label

(Rn)

,SSI=code ÊÍ

$SJBRQ

296 z/OS V1R4.0 JES2 Macros

quotation marks. You can use the $D SSI command or D SSI display-only
initialization statement to display this string.

PRESSI=
Specifies the label or a register that contains the address of a routine that
receives control to determine if this SSI request should be processed by the
subsystem interface (SSI).

SSI=
Specifies the SSI number, between 1 and 256, for the SSI function you are
defining. You can specify either a number or a symbol.

The following returns codes (in decimal) are returned in Register 15.

Return Code On exit Meaning
<0 Processing successful. $SSIBEGN macro

expansion should acquire the necessary control
blocks and invoke the SSI function routine.

>=0 Processing failed. Return immediately to the SSI
caller.

Environment
v User environment.
v MVS WAIT cannot occur.

$SSIEND – End a Subsystem Interface (SSI) Function
Use $SSIEND to call the $SSIEND service routine to define the end of the SSI
function. Before returning to the caller, the caller’s registers are restored.

Format Description

RELATED=
Specifies the label of the $SSIBEGN macro instruction which starts the SSI
function which this $SSIEND ends.

RC=
Specifies return code or a register that contains the return code that is to be
returned to the caller.

The following return codes (in decimal) are returned in Register 15.

Return Code Before exit Meaning
>=0 The actual return code is placed in the SSOBRETN

field and register 15 will be reset to zero on return
to the caller.

<=0 Return immediately to the caller and place the
absolute value of the return code in register 15.

-8 Subsystem exists, but is not active.
-12 Subsystem does not exist.
-16 Function not completed, disastrous error.
-20 Logical error.

ÊÊ
symbol

$SSIEND RELATED=label
,RC= 'positive-literal'

(Rn)

ÊÍ

$SSIBEGN

Chapter 3. JES2 Programmer Macros 297

Environment
v User environment.
v MVS WAIT cannot occur.

$STCK – Call the $STCK Service Routine
Use the $STCK macro instruction to call the $STCK (store clock) service routine.
This service routine gets the time from the TOD clock and stores it at the location
you specify.

Format Description

ADDR=
Specifies the address at which the time value is stored. If not specified, the time
will be returned in registers 0 and 1.

STCK=
Specifies the address of the field containing the time to be converted from the
TOD clock format to packed decimal. If not specified, a STCK instruction will be
used to obtain the time.

CONVERT=
Specifies whether or not the obtained time is to be converted to packed decimal
format.

YES
The time should be converted to packed decimal format.

NO
The time should not be converted to packed decimal format.

Environment
v JES2 main task.
v $WAIT cannot occur.

$STIMER – Set Interval Timer
Use $STIMER to set a time interval for the programmed interval timer.

Format Description

loc
Specifies the address of a JES2 timer queue element (TQE). Before this macro
instruction is executed, the TQE must be initialized. TQETIME must be
initialized with the interval to be set in the following manner:

v If x seconds are desired, the TQETIME should be set to x.

ÊÊ
symbol

$STCK ADDR=addrx
,STCK= addr

(R1)
NO

,CONVERT= YES

ÊÍ

ÊÊ
symbol

$STIMER
(R1)
loc-addrx ÊÍ

$SSIEND

298 z/OS V1R4.0 JES2 Macros

v If y hundredth-seconds (0.01 seconds) are desired, then TQETIME should be
set to the twos complement of y.

TQEPCE must be initialized with the address of the processor control element
(PCE) to be posted.

If register notation is used, the address must be loaded into the designated
register before the execution of this macro instruction.

Note: An unlimited number of independent $STIMER time intervals can be active
at any time if each has been furnished with a unique JES2 timer queue
element.

Environment
v Main task.
v $WAIT cannot occur.

$STMTLOG – Log an Initialization Statement
Use $STMTLOG to log initialization statements and related diagnostic information.
This macro can be used by either JES2 or Exit 19 (Initialization Statement).

Format Description

DIAG=
Specifies the address of the diagnostic information associated with the last
analyzed initialization statement or specifies the actual text of the diagnostic
information when “label” is the keyword value. The message can be formatted
to contain a message ID and/or message length as well as the actual text. The
following table provides the required format information:

MESSAGE ID LENGTH DIAGNOSTIC FORMAT

NO NO Text ‘DDDDDD...’

YES NO Text ‘XXXDDD...’

NO YES Text ***Error***

YES YES Text ***Error***

NO NO Address LDDDDDDD...

YES NO Address XXXLDDDD...

NO YES Address DDDDDDDD...

YES YES Address XXXDDDDD...

* XXX = message ID
L = length
DDD = diagnostic

ÊÊ
symbol

$STMTLOG
DIAG= addrx

(R1)
label

,TYPE= COMMENT
ERROR
WARNING

Ê

Ê
NO

,MSGID= YES
,LEN= field

(R0)

ÊÍ

$STIMER

Chapter 3. JES2 Programmer Macros 299

TYPE=
Specifies the type of diagnostic message that is to be logged for the last
analyzed initialization statement.

COMMENT
Log the diagnostic information to hardcopy only.

WARNING
Log the diagnostic information to hardcopy if the source of the last analyzed
initialization statement is not the console. If the source is a console also log
the diagnostic information to the console.

ERROR
Log the current parameter statement to the console and hardcopy along
with the diagnostic information.

MSGID=
Specifies whether (YES) or not (NO) a message ID ($HASPnnn) is included in
the diagnostic text that is passed to the STMTLOG routine.

YES
Indicates that the message ID is supplied as part of the diagnostic text.

NO
Indicates that the message ID is not supplied as part of the diagnostic text.

LEN=
Specifies the address of the length (1-80 characters) of the diagnostic message.
If this keyword is not specified, JES2 assumes that the length of the message is
imbedded in the message.

Note: When no operands are specified, the last analyzed initialization statement is
logged.

Environment
v Only Exit 19 during JES2 initialization.
v $WAIT cannot occur.

$STORE – Store Registers in the Current Processor Save Area
Use $STORE to store one or more registers in the current processor save area
(that is, the one associated with the most recently issued $SAVE macro instruction).
The stored registers are returned to a calling routine on execution of a $RESTORE
macro instruction.

Format Description

list
Specifies a list of one or more registers, and/or groups of registers to be stored.
If more than one register is to be stored, the entire list must be enclosed in
parentheses.

A register group is indicated by a pair of registers enclosed in parentheses. All
registers, beginning with the first register specified and ending with the second

ÊÊ
symbol

$STORE list ÊÍ

$STMTLOG

300 z/OS V1R4.0 JES2 Macros

register, are stored. The order of storing a group of registers is: R14, R15,
R0-R12. If the list consists of a single group, the outer (list) parentheses are not
required.

Note: All registers must be specified symbolically. The accepted register
symbols are: R0, R1, R2,. . ., R15.

Examples:
Store register 2
$STORE (R2) or
$STORE R2

Store registers 15 through 8
$STORE ((R15,R8)) or
$STORE (R15,R8)

Store register 3 and register 10
$STORE ((R3), (R10)) or
$STORE ((R3),R10) or
$STORE (R3,(R10))

Restore registers 0, 3 through 5, and 8
$STORE (R8, R0,(R3, R5))

Note: The sublist order is unimportant.

Environment
v All environments.
v $WAIT cannot occur.

$SUBIT – Initiate Subtask Queueing
Use $SUBIT to invoke a service routine under a subtask. Use $SUBIT to provide
services, from the main task, that might:
v Cause an MVS WAIT to occur.
v Perform input or output operations.
v Perform intensive calculations.

$SUBIT places the request for processing by a specified routine on a subtask work
queue.

Format Description

ÊÊ
symbol

$SUBIT rtn-name
(Rn)

,SSQDADDR=addr
NO

,FREESQD= YES

Ê

Ê
HCT

,R11= HCCT
(R0)

,PARM0= addr
(R1)

,PARM1= addr

Ê

Ê
REGULAR

,PRIORITY= LOW
HIGH
(Rn)
literal

NO
,UNCOND= YES

YES
,WAIT= NO

ÊÍ

$STORE

Chapter 3. JES2 Programmer Macros 301

rtn-name|Rn
Specifies the name (1 to 8 characters), or a register that contains the address,
of the routine that is to run under the subtask. This is a required, positional
parameter.

SQDADDR=addr
Specifies the address of the subtask queue descriptor ($SQD). This parameter
is required.

Note: The $SQD must contain any parameters, or the address of any
parameter lists, the routine requires.

FREESQD= YES|NO
Specifies whether (YES) or not (NO) a $SUBIT call obtains and releases an
SQD (subtask queue descriptor). FREESQD=YES is mutually exclusive with
SQDADDR= and WAIT=YES.

R11=HCT|HCCT
Specifies the communication table address the routine called by the subtask is
to use.

Default: HCT

PARM0=addr|R0
This is the value in register 0 passed to the routine by the subtask. The value of
this parameter depends on the routine invoked. If you specify R0, or allow this
to default, you must place whatever the routine requires in R0 before invoking
$SUBIT.

Default: R0

PARM1=addr|R1
This is the value in register 1 passed to the routine by the subtask. The routine
uses this as the address of its parameter list. If you specify R1, or allow this to
default, you must place whatever the routine requires in R1 before invoking
$SUBIT.

Default: R1

PRIORITY=LOW|REGULAR|HIGH|(Rn)|literal
Specifies the priority of this request. If specified as a register (Rn), the low-order
byte of the register must contain the value associated with the priority required.

If specified as a literal, the literal must be equated to one of the values
associated with the priority required. The values and the associated priority are:

Value Passed Priority Required
0 Regular
1 High
2 Regular
other Low

Default: Regular

UNCOND=YES|NO
Specifies whether the JES2 main task will issue this request when no general
purpose subtasks are attached. (An MVS WAIT may occur.)

Default: NO

$SUBIT

302 z/OS V1R4.0 JES2 Macros

Note: Only use UNCOND=YES when JES2 must perform the function you are
requesting under any condition even at the expense of performance.
Severe performance degradation will occur if JES2 did not attach
any general purpose subtasks.

WAIT=YES|NO
Specifies whether $SUBIT is to return after queueing the request to the
subtask. If you specify WAIT=NO, code a $WAIT for the $SQD to post the ECB
identified by field SQDXECB in $SQD. WAIT=YES is mutually exclusive with
FREESQD=YES.

Default: YES

Note: If FREESQD=YES is specified, WAIT= has no default because the ECB,
which is part of the SQD, is being freed by the subtask.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Processing successful (no errors).
4 Invalid routine address. $SUBIT did not call the routine. Do not

resubmit the request.
8 An abend occurred in the called routine. Do not resubmit the

request.
12 A subtask error occurred before calling the routine. Retry the

request.
16 A subtask error occurred after calling the routine. Retry the request.
20 Processing failed. JES2 did not attach any general purpose

subtasks during initialization. You receive this code only if you
coded UNCOND=NO.

24 Processing failed. An abend occurred in $SUBIT.
28 Processing failed. A valid $SQD was not available.

Environment
v JES2 main task.
v $WAIT can occur.
v MVS WAIT can occur if you specify UNCOND=YES.

$SYMREC – Create and Issue a Symptom Record
Use $SYMREC to create a symptom record and record the symptom record in the
logrec data set or a job log. The data in the symptom record is a description of a
programming failure and a description of the environment in which the failure
occurred. When JES2 detects an error during execution, it stores diagnostic
information into the symptom record and issues the MVS SYMREC macro to log
the information.

The symptom record built by $SYMREC contains five sections. For a detailed
description of the type of information in each of the sections, see z/OS MVS
Programming: Assembler Services Guide. The $SYMREC service fills in the
information for sections 1, 2, and 2.1. $SYMREC also updates section 3 with the
component id. Use the $SYMTAB macro to fill in sections 3, 4, and 5 of the
symptom record.

$SUBIT

Chapter 3. JES2 Programmer Macros 303

Format Description

TABLE=
Specifies the address of the beginning of a symptom table to be used to create
the symptom record. The symptom table must have been created with a
$SYMTAB TYPE=START macro.

CB=
Specifies the address of a control block that contains information to fill in the
symptom record. If a control block is not specified, information is obtained from
the HCT or the HCCT.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 The symptom record was successfully written (no errors).
4 Unable to write the symptom record because of a failure from MVS

SYMREC service.
8 Unable to write the symptom record because storage was not

obtained.

Environment
v JES2 main task, JES2 subtask, FSS, and user.
v $WAIT cannot occur.

$SYMTAB – Create a Symptom Record Table
Use $SYMTAB to create a symptom record table consisting of entries describing
information used to fill in sections 3, 4, and 5 of a symptom record created with a
$SYMREC macro. Issue the $SYMTAB macro multiple times to provide information
used to fill in each symptom record. $SYMTAB entries are created for the following
reasons:

v To define the beginning of a symptom record table (TYPE=START). You must
create a TYPE=START entry for each symptom record prior to issuing other
$SYMTABs for that symptom record table.

v To define a control block to be used in filling in the symptom record
(TYPE=CBDEF).

v To define a condition that will be tested (TYPE=COND).

v To specify data to be placed into a symptom record (TYPE=DATA).

v To specify the beginning of a new section (TYPE=SECTION).

v To define the end of a symptom record table (TYPE=END). You must create a
TYPE=END entry for each symptom record after you have defined all the
information required in the symptom table with $SYMTABs.

ÊÊ
symbol

$SYMREC ,TABLE= addr
(Rx) ,CB=addrx

ÊÍ

$SYMREC

304 z/OS V1R4.0 JES2 Macros

Format Description

TYPE=
Identifies the type of table entry. This parameter is required. Depending upon
which TYPE is specified, one or more of the subparameters may be required or
optional. Valid types are:

START
Specifies the beginning of a table.

CBDEF
Defines a control block to be used in filling in the symptom record.

COND
Defines conditions to be tested in later $SYMTAB macros.

DATA
Specifies the data to be placed into a symptom record.

SECTION
Identifies the start of a new section.

END
Specifies the end of a table.

Depending on which TYPE was coded, the following subparameters may be
required or optional:

CB=
Specifies the EBCDIC name of a control block. The meaning of CB= will be
different depending on what was specified for the TYPE= keyword.

v If TYPE=CBDEF was specified, CB= will specify the name of the control
block being defined. If the CBIND= parameter is not specified on this macro,
this name must be the name of the control block you can obtain with the
$GETADDR macro.

v If TYPE=DATA was specified, the CB= parameter specifies the name of the
control block that contains the field being formatted. Control blocks must
have been previously defined by a TYPE=CBDEF statement. (BASE refers to
the control block passed on the $SYMREC macro.)

v If TYPE=COND was specified, the CB= parameter specifies the control block
that contains the field being tested. Control blocks must have been previously
defined by a TYPE=CBDEF statement. HCT, HCCT, and BASE are
predefined and can be used. (BASE refers to the control block passed on the
$SYMREC macro.)

ÊÊ
symbol

$SYMTAB Ê

Ê TYPE= START
,DESC=descript ,DSECT=dsectname
(Rn)

CBDEF ,CB=cbname
,CBIND=(field1,dsect1,instr1)... ,DSECT=dsectname ,REGISTER= Rn

()
COND ,CB=cbname ,COND=cond ,DATA=(data,length) ,FIELD=(fieldname,length) ,TEST=(BIT ,condind)

FIELD
DATA ,KEY=key ,DATA=(data,length)

,CONT=condtab ,CB=cbname, CONV=conversion ,FIELD=(fieldname,length)
YES

,DEBUGMSG= NO
SECTION ,SECTION=sect
END

ÊÍ

$SYMTAB

Chapter 3. JES2 Programmer Macros 305

CBIND=
Specifies a series of instructions to locate a control block using a known control
block. This parameter must contain a multiple of 3 values, with each set of 3
positional values defining a field name, a DSECT name, and an instruction. The
first DSECT must be a control block name that is already known or can be
obtained using the $GETADDR macro. Starting from this control block, the
address of the desired control block is found by performing, in succession, the
instructions specified against their associated fields in the control block chain.
The Rx instructions permitted are L, LA, A, AH, AL, S, SH, SL, and MH.

CBIND= and REGISTER= are mutually exclusive.

COND=
Specifies the name of a condition. The meaning of this parameter will be
different depending on what was specified for the TYPE= keyword.

v If TYPE=COND was specified, COND= specifies the name of a condition
being defined.

v If TYPE=DATA was specified, COND= specifies the set of previously defined
conditions which must be met before this SYMTAB can be used. This can be
a single value or a set of values, separated by commas, which all must be
met.

CONV=
Identifies the conversion to be used to create the field. Valid conversions are:

CHAR
Data is EBCDIC and needs no conversion.

HEX
Binary data is to be converted to EBCDIC hexadecimal data.

DEC
Binary data is to be converted into EBCDIC decimal data.

NONE
Data is moved, but is not converted. This is the default.

DATA=
Specifies constant data. The meaning of DATA= will be different depending on
what was specified for the TYPE= keyword.

v If TYPE=DATA was specified, DATA= specifies constant data to be placed in
the symptom record. The length subparameter specifies the length of the
data. The DATA= keyword cannot be specified with the FIELD= keyword if
TYPE=DATA.

v If TYPE=COND was specified, DATA= specifies constant data to be
compared to the field data. The length subparameter specifies the length of
the data.

DEBUGMSG=YES | NO
Specifies whether (YES) or not (NO) you require JES2 to issue message
$HASP805 jobname SYMREC ISSUED FROM module WITH A DESCRIPTION
OF desc whenever JES2 requests that MVS write a symptom record to the
logrec data set. Although the message is useful to inform you of errors, some
symptom records are informational and you might not want to receive this
message whenever JES2 requests a SYMREC, particularly for those symptom
records that are not likely to indicate actual errors.

Notes:

1. This specification can be used to suppress a specification of SYMREC=YES
on the DEBUG initialization statement.

$SYMTAB

306 z/OS V1R4.0 JES2 Macros

2. The symptom record is written to the logrec data set regardless of this
specification.

DEBUGMSG= is only valid if TYPE=START is also specified.

DESC=
Specifies a 32-byte field of descriptive information placed in the 2.1 section of
the symptom record. You can specify DESC= as a quoted string, a character
string (quotes and spaces are not allowed), or a register (R2-R13). If you use
register notation, JES2 assumes that when the $SYMREC macro is issued, the
specified register points to a 32-byte constant that is to be used as the
description.

If not specified, the description defaults to “JES2 $SYMREC SERVICE”.

DSECT=
Specifies the label on the DSECT statement that maps the control block being
defined. If not specified, the value of CB= is used.

FIELD=
Specifies the name of a field in the specified control block. The meaning of
FIELD= will be different depending on what was specified for the TYPE=
keyword.

v If TYPE=DATA was specified, the FIELD= subparameter specifies the name
of the field that contains data to be placed into the symptom string. The
length subparameter specifies the length of the field. If the length is not
specified, the assembler length of the field is used.

v If TYPE=COND is specified, the FIELD= subparameter specifies the name of
the field that contains data to be tested. The length subparameter specifies
the length of the field. If the length is not specified, the assembler length of
the field is used.

KEY=
Specifies the key describing the data element. For sections 3 and 4 (as defined
on the SECTION= keyword of this macro), a structure data base key is used to
identify the data. These keys are defined by MVS (For example, KEY=REGS/).
For a description of structured data base keys and their use in symptom strings,
see z/OS MVS Diagnosis: Procedures. For section 5, a four digit hexadecimal
constant must be specified to identify the data (for example, KEY=0A34). Keys
for section 5 are defined on a component basis.

REGISTER=
Specifies, at the time of $SYMREC macro invocation, which register (R2-R13)
contains the address of the control block that is being defined for a
TYPE=CBDEF call.

REGISTER= and CBIND= are mutually exclusive.

SECTION=
Identifies the number of the section being started. This number must be either
3, 4, or 5.

TEST=
Specifies the type of test to be performed for a $SYMTAB TYPE=COND. The
first subparameter specifies whether bits will be tested (BIT) or a field will be
tested (FIELD). The tests are performed with FIELD as the first operand and
DATA as the second operand. The second subparameter (condind) indicates the
condition used to set the condition indicator.

v If BIT was specified, the valid values for condind are ‘ON’, ‘¬ON’, ‘OFF’,
‘¬OFF’, ‘MIXED’, and ‘¬MIXED’.

$SYMTAB

Chapter 3. JES2 Programmer Macros 307

v If FIELD was specified, the valid values for condind are ‘EQUAL’, ‘¬EQUAL’,
‘HIGH’, ‘¬HIGH’, ‘LOW’, and ‘¬LOW’.

Environment
v JES2 main task, JES2 subtask, FSS, and user.

$TIDTAB – Generate the Trace ID Table DSECT
Use $TIDTAB to map and generate trace ID (TID) table entries.

Format Description

TABLE=
Specifies the first entry in the HASP or user TID table or end of a TID table.
DYNAMIC specifies that this is a DYNAMIC table. If TABLE= is specified, all
other operands are ignored.

NAME=
Specifies a 1-8 character name for the TID type. This name is used on the first
line of output for the trace record. If NAME= is not specified, DSECT mapping
is generated, an all other keywords are ignored.

ID=
Specifies a trace identifier, a value from 0-255. The HASP table currently
defines identifiers from 0-31.

Note: User entries should use identifiers from 255 down to prevent overlap of
trace table ID numbers.

FORMAT=
Specifies the name of a formatting routine that will format the trace records for
this type. If the symbol used as the name of this formatting routine is not
defined in the assembly module containing this $TIDTAB macro, then the TID
table field is defined using a VCON rather than an ACON.

Note: If you omit all the operands on the $TIDTAB macro, a DSECT mapping of a
TID table entry is generated; otherwise, an actual TID table entry is
generated.

Environment
v Main task or during JES2 initialization and termination.
v $WAIT is not applicable – this macro generates a DSECT or a static table entry;

it does not generate executable code.

ÊÊ
symbol

$TIDTAB
TABLE= HASP

USER
END
DYNAMIC

,NAME=char-name
Ê

Ê
,ID=value ,FORMAT=relexp

ÊÍ

$SYMTAB

308 z/OS V1R4.0 JES2 Macros

$TRACE – Trace a JES2 Activity
Use the $TRACE macro instruction to allocate a JES2 trace table entry (TTE) in an
active trace table and return its address. Optionally, $TRACE initializes the TTE
based on parameters passed. The JES2 event trace facility is called to perform the
TTE allocation.

$TRACE can be specified anywhere in the JES2 system except in routines running
as disabled interrupt exits (for example, an IOS appendage or in cross memory
mode as is sometimes the case in the FSS environment). R13 must point to a
usable OS-style save area.

On exit, register 1 contains the address of the TTEDATA field in the TTE. Any
changes to the TTE must be accomplished before issuing a wait (WAIT or $WAIT,
explicit or implied). A condition code of zero on exit indicates that the TTE was
successfully allocated; return code 4 indicates unsuccessful allocation either
because tracing is not started or the individual ID is not currently being traced.

In environments other than the JES2 main task, a $TRACE RELEASE request must
be made after the formatted TTE is ready. The $TRACE facility is serialized using a
resource that is obtained by that request.

Format Description

RELEASE
Specifies the release of the trace buffer. This positional operand must be used
in either the user, subtask or the FSS environment after the trace table entry
fields are coded.

Note: When issuing a $TRACE RELEASE, TOKEN= must contain the value
placed in register 0 when the trace with this ID was originally issued.

ID=
Specifies the ID associated with this trace entry. The ID is a value between 1
and 255. If 0 is specified, JES2 does not create a TTE but instructs the event
trace facility to spin-off the current trace log data set (if logging is active). ID=0
is specified in JES2 routines controlling trace activities and should not be
specified outside these areas.

Note: IBM trace IDs start from 1 and increase. User trace IDs should start at
255 and decrease to prevent overlap of ID numbers. (Refer to z/OS

ÊÊ
symbol

$TRACE
RELEASE ,ID= id

0
,OFF= addrx

(Rx)

Ê

Ê
,NAME=symbol 0

,LEN= (R0)
addrx

0
,DATA= addrx

(R1)

Ê

Ê
NO

,SUBTASK= YES
TRUNC

,TYPE= ENTER
TEST
SPIN

(R0)
,TOKEN= addrx

(Rx)

ÊÍ

$TRACE

Chapter 3. JES2 Programmer Macros 309

JES2 Initialization and Tuning Guide for the definition of the trace
identifiers and the TRACE statements.)

OFF=
Specifies the address that is given control if tracing is not currently being used.
If register notation is used, the designated register must be previously loaded
with the address.

If this operand is omitted, control is given to the location after the macro
expansion with condition code 0.

NAME=symbol
Specifies the 1- to 8-character identifier to be associated with this macro call. If
this operand is omitted, the label symbol used by the $TRACE macro call is
used. If neither is specified, the current CSECT name is used.

LEN=
Specifies (by a valid expression or through register notation) the length of the
trace table entry (TTE) to be allocated. If register notation (R2-R12) is used, the
designated register must be previously loaded with the length. The address
(addrx) of either a fullword or halfword containing the length can be used if
neither register notation (Rx) nor a specified value or equated value is used for
length. The maximum length is:

(PAGE x 4096) – 68

Where:
PAGE 68 PAGE parameter on the TRACE initialization statement

represents the current header lengths in JES2 trace table
control blocks

DATA=
Specifies the address or a register that points to the location where the data to
be logged can be found. If this keyword is specified, all activity for the new TTE
is performed by the $TRACE facility. If this keyword is not specified or DATA=0
is specified and ENVIRON= is specified as USER, SUBTASK, or FSS, you
must issue a $TRACE RELEASE. The returned TTE should be formatted and
then a $TRACE RELEASE must be issued.

SUBTASK=
Specifies the trace is issued from the JES2 main task or the subtask
environment.

YES
The trace is issued from the subtask environment.

NO
The trace is issued from the JES2 main task environment.

TYPE=
Specifies the action to be taken if ID=0.

ENTER
Generate code to enter the tracing routine without testing the necessity to
do so. This assumes that a $TRACE TYPE=TEST has been used earlier to
see if tracing is active and if the trace id is active.

Note: Mutually exclusive with OFF=

$TRACE

310 z/OS V1R4.0 JES2 Macros

|
|
|
|

|

TEST
Generates code to test if the trace ID specified on the ID= keyword is
currently enabled. If this keyword is specified, the OFF= keyword must also
be coded.

Notes:

1. The trace facility must be active.

2. If ID=0 is specified with this keyword, the trace macro will verify whether
the trace facility is active.

TRUNC
The current trace table is to be truncated, and the trace table is passed to
the trace log processor (if logging is active).

SPIN
The event trace facility is to spin off the current trace log data set and
truncate the current trace table, passing the table to the trace log processor
(if logging is active).

TOKEN
Specifies the address at which $TRACE is to place the token returned from the
macro service routine or the address of the token $TRACE is to use when
RELEASE is specified.

addrx
The address of the storage location of the token.

Rx
The register that contains the address of the storage location of the token.

R0
Register 0 is the default register.

Environment
v JES2 main task, subtask, user, or functional subsystem (HASPFSSM).
v $WAIT cannot occur; however, in other than the JES2 main task environment, an

MVS WAIT can occur.

$TRACK – Acquire a Direct-Access Track Address
Use $TRACK to obtain a track address on a JES2 spool volume and return this
track address in register 1.

Format Description

JQE=
Specifies the address of the job queue element (JQE). This is required for the
JES2 main task environment.

ÊÊ
symbol

$TRACK tab-addr
(R1)

,JQE= jqe-addr
(R0) YES

,WAIT= NO

Ê

Ê
, SJB

SJIOB
,ERRET= addrx

(Rn)
YES

,WRPRIM= NO

ÊÍ

$TRACE

Chapter 3. JES2 Programmer Macros 311

WAIT=
Specifies whether (YES) or not (NO) to wait if $TRACK is unable to
successfully allocate a track group. If YES is specified, the service routine will
issue a $WAIT TRAK if no tracks are currently available. routine will issue a
$WAIT TRAK if no tracks are currently available.

SJB | SJIOB
Specifies either the subsystem job block (SJB) address or subsystem job
input/output block (SJIOB) address that JES2 loads into register 10.

Notes:

1. If SJIOB is specified, the SJB parameter is ignored.

2. SJB is valid in the user environment only.

3. SJBIOB is valid in the user and subtask environments.

ERRET=
Specifies the address (or register that contains the address) of an error routine
that gets control if register 15 contains a non-zero return code from $STRAK.

WRPRIM=
Specifies whether (YES) or not (NO) to write the primary allocation IOT if a new
track group is allocated. WRPRIM=YES is the default.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning (JES2 Address Space)
0 Allocation successful within the same track group
4 Allocation successful in a different track group
8 WAIT=NO was specified – no track group returned

Return Code Meaning (User Address Space)
0 Allocation successful
8 Error encountered in $STRAK

Environment
v Main task and user address space.
v $WAIT can occur.

$TTIMER – Test Interval Timer
Use $TTIMER to obtain the time remaining in the associated time interval that was
previously set with $STIMER macro instruction. The value of the remaining time
interval is returned in register 0 in seconds (rounded to the nearest second). The
$TTIMER macro instruction can also be used to cancel the associated time interval.

Format Description

loc
Specifies the address of the timer queue element. If register notation is used,
the address must have been loaded into the designated register before the
execution of this macro instruction.

ÊÊ
symbol

$TTIMER loc-adrx
(R1)

,CANCEL ÊÍ

$TRACK

312 z/OS V1R4.0 JES2 Macros

If the timer queue element is not active or if the interval has expired before the
$TTIMER macro instruction is executed, the value of the time interval returned
is 0.

CANCEL
Specifies that the interval in effect should be cancelled.

If this operand is omitted, processing continues with the unexpired portion of the
interval still in effect.

If the timer queue element is not active or if the interval has expired before the
$TTIMER macro instruction is executed, the CANCEL operand has no effect.

Environment
v Main task.
v $WAIT cannot occur.

$VERIFY – Verify a Control Block
Use the $VERIFY macro instruction to validate control block contents when read in
from spool.

Format Description

TYPE=
Specifies the EBCDIC control block identifier or a register that contains the
address of the 4-byte EBCDIC identifier of the control block to be verified.
TYPE= is required for control block verification.

Control Block Meaning
CHK checkpoint control block
HDB JES2 SYSIN/SYSOUT data buffer
IOT input/output table control block
JCT job control table control block
NHSB NJE network header buffer
OCT output control table
SWBI scheduler work block information

BUFAD=
Specifies the address of the buffer that contains the control block to be verified.

KEYFLD=
Specifies the address of a field to be used to verify the control block. The value
at this address is compared to the control block key field to determine if the
control block is valid. The control block key field for this type is specified by the
KEYOFF= value of the verification table you built using $VERTAB.

ÊÊ
symbol

$VERIFY TYPE= CHK
IOT
JCT
OCT
SWBI
(Rn)

,BUFAD= addrx
(Rn)

Ê

Ê
(R2)

,MTTR= addrx
,KEYFLD= addrx

(Rn)
,ERRET=addrx

ÊÍ

$TTIMER

Chapter 3. JES2 Programmer Macros 313

ERRET=
Specifies the address of an error routine that is to get control if a control block
error is detected or the control block is not verified.

MTTR=
Specifies a track address (MTTR) that is to be compared aganist the contents
of a MTTR field in the control block to determine control block validity.

Return Codes
The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Control block valid
4 Control block cannot be verified
8 Control block invalid

Environment
v JES2 main task, user task (HASPFSSM address space), and HASPFSSM.
v No waits can occur

Note: This macro requires registers 0, 1, 14, and 15.

$VERTAB – Build the Inline Verification Tables
Use the $VERTAB macro instruction to start, to build, and to end the inline
verification tables to be used by the $VERIFY service routine.

Use $VERTAB to map and generate VER table entries.

$VERTAB entries are used to define the start of a user table ($VERTAB
TABLE=USER...) or a JES2 table ($VERTAB TABLE=HASP...), the end of a table
($VERTAB TABLE=END) or an entry in a table ($VERTAB NAME=HUTCH...).

Note: The format description that follows breaks the macro into a boundary form
(the form that starts or ends a table) and an entry form (the form that
defines each table entry).

Format Description

Boundary Form

Entry Form

ÊÊ
symbol

$VERTAB TABLE= HASP
END

ÊÍ

ÊÊ
symbol

$VERTAB TYPE=type-code
,IDOFF=id-offset

Ê

Ê
,KEYOFF=key-offset ,KEYLEN=key-length

Ê

Ê
,MTTRFLD=MTTR-field-offset ,ROUTINE=routine-name

ÊÍ

$VERIFY

314 z/OS V1R4.0 JES2 Macros

TYPE=
Specifies the EBCDIC id to be used to verify the control block. These types are
the same as the types on the $VERIFY macro.

IDOFF=
Specifies the offset of the control block identifier from the beginning of the
control block. IDOFF= is required if you specify TYPE=.

KEYOFF=
Specifies the offset from the beginning of the control block of the key field.
KEYOFF= is required if you specify TYPE=.

KEYLEN=
Specifies the length of the key field for the control block verification field that
this macro builds. KEYLEN= is required if you specify TYPE=.

MTTRFLD=
Specifies the offset of a field containing a MTTR to be verified. MTTRFLD+ is
optional.

ROUTINE=
Specifies the name of a control block-specific routine that JES2 calls for
additional verification during an invocation of the $VERIFY service.

The routine specified must be in the same CSECT/RSECT as the table being
defined using $VERTAB.

TABLE=
Specifies the beginning (HASP) or end (END) of the verification table.

Notes:

1. The table must start with a $VERTAB TABLE=HASP.

2. The verification table is prefixed by a control block pool header.

3. TABLE= and TYPE= are mutually exclusive keywords. A warning message
will be issued if the two are specified together, and the mapping DSECT will
not be generated.

4. The table must end with $VERTAB TABLE=END.

Environment
v JES2 main task, user task, and HASPFSSM address space.
v $WAIT is not applicable – this macro generates a DSECT or a static table entry;

it does not generate executable code.

$VFL – Variable Field Length Instruction Operation
Use $VFL to provide certain storage-to-storage operations where the field lengths
exceed 256 bytes or where no assembler instructions exist.

Format Description

ÊÊ
symbol

$VFL op-code , to-addrx
(R1)

, from-addrx
(R15)

Ê

Ê , length-addrx
(R0)

ÊÍ

$VERTAB

Chapter 3. JES2 Programmer Macros 315

op-code
Specifies the storage-to-storage operation as one of the following:

NC
And operation

XC
Exclusive or operation

OC
Or operation

MVC
Nondestructive overlapping move operation (see note 3)

to-addrx
Specifies the address of the first field (see note 1).

from-addrx
Specifies the address of the second field (note 2).

length-addrx
Specifies the total number of bytes in the field (see note 1).

Notes:

1. If the length operand is written as an address, the register contains the address
of a fullword which contains the address of the field (which contains the field
length).

If the length operand is written using register notation, it represents the address
of the field that contains the field length. If register notation is used, the address
(or field length) must be loaded into the designated register before the execution
of the macro instruction.

2. Condition codes from the execution of this macro are not usable.

3. When MVC is specified, a shift character long operation is performed. The
number of bytes specified by length is moved from the from address to the to
address. The origin and destination fields may overlap in any desired manner;
the character string is moved intact without propagating the nonoverlapping
portion of the fields. $VFL MVC is intended to be used in exceptional situations.
For performance reasons, it should not be used where MVCL or an executed
MVC would suffice.

Environment
v Main task and subtask.
v User address space.
v $WAIT cannot occur.

$WAIT – Wait for a JES2 Event
Use $WAIT to place the associated processor in a JES2 wait state and specify the
event or resource for which the processor is waiting.

Optionally, use $WAIT to specify an extended ECB structure (XECB) which may be
posted by OS/VS service or some other task. If the XECB has already been posted,
$WAIT returns immediately to the processor; otherwise, $WAIT initializes the
extended ECB and places the processor in a JES2 wait state.

Callers in AR ASC mode are supported. Access registers are restored only if the
caller is in AR ASC mode. The ASC mode is always restored upon return from
$WAIT.

$VFL

316 z/OS V1R4.0 JES2 Macros

Format Description

event | resource
Specifies the JES2 event or resource for which the processor is to wait as one
of the following:

Event:

HOLD
Waiting for a $S operator command

IO Waiting for the completion of an input/output operation

OPER
Waiting to be reactivated

POST
Waiting for some resource or any $POST

WORK
Waiting for more work

Resource:

ABIT
Waiting for the next dispatcher cycle.

ALICE
PCEs waiting for incomplete warm start.

ALOC
Waiting for allocation.

ARMS
Automatic restart manager support processor.

BERTL
Waiting for a BERT lock to free.

BERTW
Waiting for a free BERT.

BREG
PCEs waiting for WLM registration requests.

BUF
Waiting for a JES2 buffer.

CCAN
Cancel JOB/TSU/STC in conversion.

CKPT
Waiting for the completion of a JES2 checkpoint.

CKPTL
Lurking for CKPT READ.

ÊÊ
symbol

$WAIT event
resource ,MVSWAIT=pceid YES

,INHIBIT= NO

Ê

Ê
,XECB= addrx

(R1)

ÊÍ

$WAIT

Chapter 3. JES2 Programmer Macros 317

CKPTP
Waiting for a checkpoint post.

CKPTW
Waiting for checkpoint work.

CMB
Waiting for a console message buffer.

CNVT
Waiting for a converter.

DILBERT
PCEs waiting for $DILBERT requests.

EOM
Waiting for End Of Memory events.

FSS
Waiting for completion of FSS-level processing.

GENL
Provides a method of communication from one processor control element
(PCE) to another. It does not provide serialization between the PCEs. You
must ensure the condition of the waiting PCE is satisfied before it is posted.
Frequent use of the GENL resource name will have a severe impact on
your installation’s performance.

HOMOG
Within your MAS, either the member running the highest or lowest level of
JES2 has changed. $HCT fields, $HIGHVER and $LOWVER reflect these
changes, respectively.

HOPE
Waiting for an output processor.

IMAGE
Waiting for a UCS or FCB image load completion.

JCMD
Waiting for a job queue element (JQE) that needs to be canceled ($C) or
restarted ($E).

JOB
Waiting for a job.

JOE
Waiting for a job output element (JOE) to be freed.

JOT
Waiting for job output table service.

LOCK
Waiting for a lock.

MAIN
Waiting for storage.

MFMT
A spool volume has been mini-formatted. That is, JES2 has completed
writing the 8-byte signature records for all track groups. Mini-formatting
does not affect existing information on the spool.

MLLM
Line manager resource $POSTs.

$WAIT

318 z/OS V1R4.0 JES2 Macros

NEWS
PCE waiting for a JNEW update (part of JESNEWS process).

PCETM
Waiting for resource manager to detach PCE.

PSO
PSO processor waiting for work.

PURGE
Purge processor is waiting for work.

PURGS
Waiting for purge resources from $PURGER.

RMWT
Waiting for resource manager to finish processing.

RSV
A JES2 RESERVE has been satisfied.

SMF
Waiting for an SMF buffer.

SPI
PCEs waiting for SYSOUT API requests.

SPIN
A spin data set has been created.

STAC
STATUS/CANCEL resource type.

TRACK
Waiting for a direct-access track address.

UNIT
Waiting for a device control table.

WARM
Warm processor is waiting for work.

WSLOK
Warm start lock.

XMITJOB
Waiting for a job to be transmitted to another node.

INHIBIT=
Specifies whether the processor issuing this macro instruction is to be
dispatched if specifically posted ($POST).

YES
All posts ($POST) specifying this processor are ignored, except for the one
indicating completion of the event specified in this macro instruction, or the
one indicating the optional XECB has been POSTed.

NO
The processor issuing this macro instruction is to be dispatched if
specifically posted ($POST) for any event.

MVSWAIT=
Specifies whether the current PCE is to be tested against the PCEID specified
here. If the PCE IDs do match, the current PCE and JES2 are placed in an
MVS WAIT rather than a JES2 dispatcher $WAIT. If MVSWAIT= is specified

$WAIT

Chapter 3. JES2 Programmer Macros 319

and the current PCE does not match the pceid specified here, then a JES2
$WAIT is executed. A JES2 $WAIT is generated for the PCE if MVSWAIT= is
not specified. If you specify MVSWAIT=, you must also specify XECB=.

XECB=
Specifies the address of an XECB. The processor issuing this macro instruction
will be dispatched when the XECB is posted, or immediately resumes control if
the XECB has already been posted. If register notation is used, the designated
register must be loaded with the address of the XECB before executing this
macro.

Notes:

1. The execution of this macro instruction requires register 15; also, register 1 is
required if the XECB option is used.

2. The JES2 processor is dispatched if either the JES2 event/resource is posted or
the ECB in the XECB control block is posted.

Attention:

v If the XECB option is used, the processor is dispatched by either the JES2 event
occurrence or the POST of the XECB.

v You may clear the first word of the XECB; clearing the entire XECB will cause
problems in other JES2 chains that may be in use.

Environment
v Main task and JES2 initialization.
v $WAIT is not applicable.
v MVS WAIT can occur.
v Callers in AR ASC mode are supported.

$WSSETUP – Set Values Required for Work Selection
Use the $WSSETUP macro instruction to set those values that are required to
support work selection.

Format Description

DEVADDR=
Specifies the address of a device control table (DCT), a partitioned information
table (PIT), or a work selection parameter (WSP). Specify this address either by
a label or a register; the address is loaded in register 1.

TYPE=
Specifies the device control block name used to calculate the offset for the
fields specified by the VOL= and VOLNUM= keywords. If this keyword is
specified, both VOL= and VOLNUM= must also be specified.

VOL=
Specifies the device’s volume field. The offset for this field is calculated using

ÊÊ
symbol

$WSSETUP DEVADDR= label
(R1)

Ê

Ê
,TYPE=cb-name ,VOL=dev-vol-field ,VOLNUM=dev-vol-num

ÊÍ

$WAIT

320 z/OS V1R4.0 JES2 Macros

the name specified by the TYPE= keyword. If this keyword is specified, both
TYPE= and VOLNUM= must also be specified.

VOLNUM=
Specifies the volume number field. The offset for this field is calculated using
the name specified by the TYPE= keyword. If this keyword is specified, both
TYPE= and VOL= must also be specified.

Environment
v JES2 main task.
v $WAIT cannot occur.

$WSTAB – Map and Generate the Work Selection Table Entries
Use the $WSTAB macro instruction to map and generate the work selection table
entries.

Use $WSTAB to map and generate WS table entries.

$WSTAB entries are used to define the start of a user table ($WSTAB
TABLE=USER...) or a JES2 table ($WSTAB TABLE=HASP...), the end of a table
($WSTAB TABLE=END) or an entry in a table ($WSTAB NAME=MARK...).

Note: The format description that follows breaks the macro into a boundary form
(the form that starts or ends a table) and an entry form (the form that
defines each table entry).

Format Description

Boundary Form

Entry Form

ÊÊ
symbol

$WSTAB TABLE= HASP ,NOENTRY
()

USER ,NOENTRY
()

END
(DYNAMIC,pair-offset)

ÊÍ

$WSSETUP

Chapter 3. JES2 Programmer Macros 321

NAME=
Specifies a 1- to 8-character name for an individual work selection criterion.

MINLEN=
Specifies the minimum length that is acceptable for the criterion name specified
on the NAME= keyword. This keyword does not also support the ALIAS=
keyword. If this keyword is not specified, the length defaults to the length of the
ws-name specified by the NAME= keyword.

ALIAS=
Specifies an alternate (alias) 1- to 4-byte character name for the work selection
criterion. MINLEN= does not support this keyword.

RTN=
Specifies the name of the routine used to check the comparison field against
the device field. This keyword is required.

FLAG
Indicates to call the general flag routine for this criterion during work
selection.

COMPARE
Indicates to call the general compare routine for this criterion during work
selection.

ÊÊ
symbol

$WSTAB NAME=criterion-name Ê

Ê
criterion-name length

,MINLEN= len-value
,ALIAS=name

Ê

Ê
,RTN= FLAG

COMPARE
RANGE
ws-rtn

,LEN=len-value ,CB= control-blk-name
0

Ê

Ê
,FLD=field-name ,FLAG=flag-value ,DEVCB= cb-name

0

Ê

Ê
,DEVFLD=field-name ,DEVNUL=flag-value ,DEVFLAG=flag-value

Ê

Ê
,DEVRNG= (field-name,field-name) ,MODRTN= FLAG

CHAR
rtn-name

Ê

Ê
,MODFLD=field-name ,MODCB=dsect-name

Ê

Ê
,MODLEN=length ,MODSRC=field-name ,MODSCB= DCT

UCT

Ê

Ê
,MODFLAG=flag-value ,MODVAL=flag-value ,MODNULL=flag-value

ÊÍ

$WSTAB

322 z/OS V1R4.0 JES2 Macros

RANGE
Indicates to call the general range routine for this criterion during work
selection.

ws-name
Specifies any other valid work selection routine that is to be called.

The following are the register values on entry to the specified routine:
R0: N/A
R1: N/A
R2: N/A
R3: WSA address
R4: Pointer to current mask byte.
R5: WSTAB address.
R6: N/A
R7: Comparison length.
R8: DEVFLD= field address (DEVCB address if DEVFLD= is not specified).
R9: N/A
R10: FLD= field address (CB address if FLD= is not specified)
R11: HCT address..
R12: N/A
R13: PCE address.
R14: Return address
R15: Routine address.

The following are the register values and conditions on exit from the specified
routine:
R0: May be destroyed.
R1: May be destroyed.
R2: Must be preserved .
R3: Must be preserved
R4: Must be preserved
R5: May be destroyed.
R6: May be destroyed.
R7: May be destroyed.
R8: May be destroyed.
R9: Must be preserved
R10: May be destroyed.
R11: Must be preserved
R12: Must be preserved
R13: Must be preserved
R14: May be destroyed.
R15: Return Code.

The following return codes (in decimal) are returned in register 15.

Return Code Meaning
0 Reject work.
4 Criterion matched, continue checking additional criteria.
8 Accept work (no further checks).
12 Reject work if prior to ’’/’’, Continue checking if after ’’/’’.

Notes:

1. $SAVE/$RETURN may be used to preserve registers but may affect
performance of devices specifying this criterion.

2. $WAIT must not be done by this routine.

$WSTAB

Chapter 3. JES2 Programmer Macros 323

CB=
Specifies the control block name required to resolve the field specified by the
FLD= keyword. This keyword is required. The valid control block names follow.

Control Block Meaning
JQE JQE required
WJOE Work JOE required
CJOE Character JOE required
HCT HCT required
NJHO Spool offload header section
NJHOX Affinity section of job header required
NJHG General section of job header required
NJH2 JES2 section of job header required
NJHT Security section of job header required
NJHU User section of job header required
NDHG General section of data set header required
NDHA 3800 Printer section of data set header required
NDHS Data stream section of data set header required
NDHT Security section of data set header required
NDHU User section of data set header required
WSA Work selection area required
ZERO No control block required for specified criterion. If CB=ZERO is

specified, both FLD= and FLAG= keywords (if also specified)
are ignored.

FLD=
Specifies the name of the work selection comparison field against which the
device field is compared. If the FLAG= keyword is specified, this keyword is
used as a flag byte to be compared against the flag byte setting specified by
FLAG=.

FLAG=
Specifies the label of the field in the FLD= byte to be tested under mask for
work selection. If FLAG= is specified, FLD= must also be specified.

LEN=
Specifies the length of a character comparison between a control block field
and a device field. This keyword defaults to the length of the comparison field
specified by the FLD= keyword.

TABLE=
Specifies the start or end of a work selection table.

Specify TABLE=HASP or TABLE=USER to start the corresponding table, and
optionally a second parameter of NOENTRY (e.g. TABLE=(USER,NOENTRY))
to indicate no ENTRY statement need be generated for the label of the scan
table.

DYNAMIC specifies that this is a DYNAMIC table. The second and subsequent
positionals, pair-offset, specify the offset of the $PAIR in either the MCT or UCT
control block with which this table is to be associated. If the table pair in the
MCT or UCT is not defined via the $PAIR macro, an assembler MNOTE will be
issued.

Specify TABLE=END to terminate a scan table.

Other operands are ignored if TABLE is specified, and a label is required on the
$WSTAB macro if a table is being started. If TABLE= and NAME= are both not
specified, only the mapping of an $WSTAB entry is generated by the macro.

$WSTAB

324 z/OS V1R4.0 JES2 Macros

DEVCB=
Specifies the control block name required to resolve the field specified by the
DEVFLD= keyword. The valid control block names follow.

Control Block Meaning
DCT DCT required
PIT PIT required
HCT HCT required
UCT UCT required
WSP WSP required
ZERO No control block required for specified criterion. If

DEVCB=ZERO is specified, both DEVFLD= and DEVFLAG=
keywords (if also specified) are ignored.

DEVFLD=
Specifies the name of the device field against which work selection comparison
field (FLD=) is compared. If the DEVFLAG= keyword is specified, this keyword
is used as a flag byte to be compared against the flag byte setting specified by
DEVFLD=. Also, if DEVFLD= is specified, DEVRNG= cannot also be specified.

DEVFLAG=
Specifies the label in the DEVFLD= byte to be tested under mask for work
selection. If DEVFLAG= is specified, DEVRNG= cannot also be specified.

DEVRNG=
Specifies the names of the upper and lower device fields against which the
control block field (as specified by the CB= and FLD= keywords) is compared. If
either DEVFLAG= or DEVFLD= are specified, this keyword cannot also be
specified.

DEVNUL=
Specifies the value for the device flag byte that is used to determine if a null
value was specified for this criterion.

MODRTN=
Specifies the name of the routine used to modify the criterion following selection
by a offload receiver. This keyword is required if the criterion is to be modified.

FLAG
Indicates that the general flag routine is to be called

CHAR
Indicates that the general character routine is to be called

rtn-name
Indicates a valid modify routine that is to be called

MODFLD=
Specifies the name of the field that is to be modified when the job or SYSOUT
is reloaded.

MODCB=
Specifies the DSECT name required to resolve the field specified by the
MODFLD= keyword. Valid field names are:

Field Name Meaning
NJHG General section of the job header
NJHO Spool offload header section
NJH2 JES2 section of the job header
NJHU User section of the job header
NDHG General section of the data set header
NJHA 3800 printer section of the data set header

$WSTAB

Chapter 3. JES2 Programmer Macros 325

NDHS Data stream section of the data set header
NDHU User section of the data set header

MODLEN=
Specifies the length of the field that is to be modified. If this length is not
specified, it defaults to the length of the name specified by the MODFLD=
keyword.

MODSRC=
Specifies the name of the field in the control block indicated by the MODSCB=
keyword that contains the value that replaces the current value in the field
specified by the MODFLD= keyword. If MODRTN= is set to either FLAG or
CHAR this keyword is required.

MODSCB=
Specifies the name of the valid control block (DCT or UCT) containing the
MODSRC field. This keyword is required if MODSRC= is specified.

MODFLAG=
Specifies the flag value to be set in MODFLD if MODRTN=FLAG is specified.
This keyword is required if MODRTN=FLAG is specified.

MODVAL=
If MODRTN=FLAG is specified, this keyword specifies a mask that is compared
against the byte specified by the MODSRC= keyword. If the flag is set, then the
flag specified by the MODFLAG= keyword is turned off in the byte specified by
the MODFLD= keyword. If the flag is not set, then the flag specified by the
MODFLAG= keyword is turned off in the byte specified by MODFLD=. This
keyword is required if MODRTN= is specified.

Note: MODVAL and MODNULL must both map to the same MODFLD= byte.

MODNULL=
If MODRTN=FLAG is specified, this keyword specifies a mask that is compared
against the value specified by the MODSRC= keyword. If the null flag is set,
then the device characteristic in the MOD= list has previously been set to NULL
and is not modified.

Note: MODNULL and MODFLD must both map to the same MODFLD= byte.

Environment
v JES2 main task.
v $WAIT cannot occur in a routine specified by either the RTN= or MODRTN=

keywords.

$WTO – JES2 Write to Operator
Use $WTO to initiate the display of a message intended for the operator either on
one or more operating system consoles or a JES2 remote work station console or
printer device.

$WSTAB

326 z/OS V1R4.0 JES2 Macros

Format Description – Standard Form

Format Description – Execution Form

ÊÊ
symbol

$WTO message-addrx
(R1)

, length-absexp
(R0)

Ê

Ê
YES

,JOB= NO
YES

,WAIT= NO
relexp

SVC35
,TYPE= SVC34

Ê

Ê
,ROUTE=code ,CLASS= $DOMACT

$ALWAYS
$ACTION
$NORMAL
$TRIVIA

YES
,DOMTERM= NO

Ê

Ê
$ST

,PRI= $HI
$LO

NO
,CMB= YES

NO
,RMT= YES

NO
,UCM= YES

Ê

Ê
,TEXT= ,CONNECT=

ÊÍ

ÊÊ
symbol

$WTO message-addrx
(R1) , length-absexp

(R0)

Ê

Ê
NO

,CMB= YES
,WAIT=relexp ,MF= E,name

EX,name

ÊÍ

$WTO

Chapter 3. JES2 Programmer Macros 327

Format Description – List Form

message
Specifies the address of a message which is to be displayed on the designated
consoles or the address of a console message buffer (CMB) where the
message resides if CMB=YES is specified. If register notation is used, the
address must be loaded into the designated register before the execution of this
macro instruction.

If you specify TYPE=SVC35, or allow TYPE= to default, the message must
have the same format as a message generated by the $MSG macro.

length
Specifies the length of the above message. If register notation is used, the
value must be loaded into the rightmost byte of the register (R0) before the
execution of the macro instruction. The rest of the register must be 0 unless the
message is being sent to a remote terminal (see RMT operand).

Note: When using the execute and list forms of the macro instruction as a pair,
the length must be specified in one of the macro instructions but not
both.

JOB=
Specifies whether the job identification and job name from the job control table
(JCT) or the job queue element (JQE) are appended to the start of the
messages as follows:

YES (default)
The job information is appended to the message.

ÊÊ
symbol

$WTO
length-absexp YES

,JOB= NO
YES

,WAIT= NO

Ê

Ê
SVC35

,TYPE= SVC34
,ROUTE=code $NORMAL

,CLASS= $DOMACT
$ALWAYS
$ACTION
$TRIVIA

Ê

Ê
YES

,DOMTERM= NO
$ST

,PRI= $HI
$LO

,MF= L
LX
E,name
EX,name

Ê

Ê
NO

,RMT= YES
NO

,UCM= YES

Ê

Ê
,TEXT= message-addrx

(message-addrx ,C) ,CONNECT= conid
,L
,D
,DE
,E

ÊÍ

$WTO

328 z/OS V1R4.0 JES2 Macros

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

NO
The job information is not appended to the message.

If this operand is omitted, JOB=YES is assumed.

CAUTION:

If JOB=YES is specified, register 10 must be loaded with the address of
either the job control table entry or the job queue element before the
execution of this macro instruction, or the job information printed is
unpredictable.

WAIT=
Specifies the action to be taken if console message buffers are not available as
follows:

YES
Return is not made until a console message buffer has become available
and the message has been queued.

If you code WAIT=YES or omit WAIT, exit 10, when it receives control, will
be told that it can take an action that will result in a $WAIT.

NO
An immediate return is made with the condition code set as follows:

CC=0
No console message buffers are available. The message was not
accepted and the macro instruction must be reissued.

CC≠0
The message was accepted.

(NO,DEMAND)
Return will not be made without queueing message. The console
message buffer will GETMAINed if required. Valid only if JES2 main
task.

relexp
A location to which control is returned if CMB=YES is not specified and no
console message buffers are available; or a location to which control is
returned if CMB=YES is specified and the control of the MLWTO resource
was required but not obtained.

If this operand is omitted, WAIT=YES is assumed.

Notes:

1. The specification of WAIT=NO has no meaning when the console
message buffer is provided by the user and CMB=YES is specified.

2. The specification of WAIT=relexp has no meaning if MF=L or LX.

CMB=
Specifies whether the user of the $WTO macro instruction has provided a
console message buffer for use by console services as follows:

NO (default)
A console message buffer has not been provided, and the message
operand refers to message text.

$WTO

Chapter 3. JES2 Programmer Macros 329

|
|

|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|

YES
A console message buffer has been provided, and the message
operand refers to the console message buffer containing the user’s
message.

If this operand is omitted, CMB=NO is assumed.

Notes:

1. If CMB=YES is specified, the message must appear in the appropriate
locations within the console message buffer as follows:

JOB=YES
Message starts in CMBTEXT field

JOB=NO
Message starts in CMBJOBN field

2. If CMB=YES and an address is not specified by the WAIT operand as a
nonprocess exit, the user must test the condition codes following the
macro instruction when multiline write-to-operator messages (MLWTO)
are specified. The condition codes indicate the following:

CC=0
The MLWTO was rejected, and the CMB is available to the caller.

CC≠0
The message has been queued for display, and the console
message buffer is not available for use by the user.

3. If CMB=YES is specified, the CMB must have been obtained with the
$GETCMB macro instruction which deletes the previously-obtained
CMB.

4. The $MSG macro instruction should be used to generate the message
text or, if dynamically generated, at least the message identification
section.

TYPE=
Specifies the logical meaning of the ROUTE operand as follows:

SVC35 (default)
The message is to be displayed on the dynamically designated remote
work station console or the operating system consoles which have been
set to receive the message category.

Notes:

1. If this option is selected, use only one of the following specifications:
ROUTE= or UCM= or RMT=

2. If you specify TYPE=SVC35, or allow TYPE= to default, the
message must have the same format as a message generated by
the $MSG macro.

SVC34
The message is to be given to the operating system as a command. If
this option is selected, ROUTE=, UCM=, and RMT= have no meaning.

ROUTE=
When using standard and MF=L forms, specifies the JES2 logical routings
which are converted to operating system equivalent routings as follows:

Designation Console Specified
$LOG Hard-copy console
$ERR Error console(s)

$WTO

330 z/OS V1R4.0 JES2 Macros

|
|
|
|

|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

||
||
||

$UR Unit-record operations area
$TP Teleprocessing operations area
$TAPE Tape operations area
$MAIN Chief operator’s area
$ALL All of the above consoles
0 UCMID or logical console are specified dynamically.

When using the MF=LX format, unless UCM=YES or RMT=YES is
specified, the operating system console routings must be specified directly
using the X'xxxx' or B'xxxxxxxxxxxxxxxx' form.

If this operand is omitted, the $LOG console is assumed unless UCM=YES
or RMT=YES is specified.

CAUTION:

The name $ALL should not be used with any other console but should
be specified alone; otherwise, results are unpredictable.

RMT=
Specifies whether the display location is to be a JES2 remote work station.

NO
The destination is not a remote work station and therefore must be
logical routing or UCM.

YES
The destination is a work station, and the following action is required
before executing execution forms of the macro instruction:

v For standard or MF=E forms, the remote number is set in register 0
(R0); 0 must be set into bits 0-7, the remote number must be set into
bits 8-23, and the length of the message must be set into bits 24-31.
R0 must be specified in the executing macro instruction’s length
operand.

v For MF=EX form, the remote number must be placed in the MF=LX
halfword field corresponding to CMBRMT field of the CMBDSECT.

UCM=
Specifies whether the display location is to be a specific operating system
console identified by a unit control module (UCM) number.

NO
The destination is not a UCM console number and therefore must be
logical routing or RMT.

YES
The destination is a UCM console number, and the following action is
required before executing execution forms of the macro instruction:

v For standard or MF=E forms, the UCM console number must be set
into register 0 (R0) with bits 0-7 set to zero, the UCM console id in
bits 8-15, bits 16-23 set to zero, and the length in bits 24-31.

v For MF=EX form, UCM console, UCM console area, and MLWTO
line type information must be placed in the MF=LX field
corresponding to the CMBUCM, CMBUCMA, and CMBLMET fields of
the CMBDSECT.

TEXT=

$WTO

Chapter 3. JES2 Programmer Macros 331

||
||
||
||
||
||

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

Option keyword which specifies the address of the text of the operator
message. The address can be in a register (2-12) or be the name of a
field. Use of this keyword implies that the WTO MF=L specified TEXT=
and that it generates an extended WPL.

The address specified by TEXT= will be placed in the WPL pointed to
via the wto-list parameter.

TEXT is the address of a half-word length followed by the message
text. The length does not include the length of the half-word.

A second optional value is the line type for multi-line WTOs. Valid
values are C, L, D, DE, and E. See z/OS MVS IPCS Customizationfor
complete descriptions.

CONNECT=
If this is not the first line of a multi-line WTO, specifies the MLWTO
connect ID. Only valid if TEXT= was specified.

When using extended forms of the WTO macro instruction, the MF=LX
format of macro is used to create a partial parameter list in the format of
the resulting console message buffer (CMB) used to queue the message for
display. This list can be mapped by the $CMB macro instruction offset so
that byte 1 of the macro expansion corresponds with the CMBFLAG field.
The parameter list is 14 bytes long. The fields corresponding to the CMBTO
control fields must be set into the parameter list before execution of the
corresponding MF=EX form of the $WTO macro instruction. Normally this is
done by moving in the $SYSID field of the HASP communications table
(HCT). Other fields may be required depending on options specified in the
MF=LX format as follows:

ROUTE=specified
No setting required in the CMBOUT field.

UCM=YES and RMT=YES are prohibited.

RMT=YES
Remote work station number must be set in the CMBRMT byte of the
CMBOUT field.

ROUTE and UCM=YES are prohibited.

UCM=YES
Operating system UCM information is required:

v UCM number is set in CMBUCM.

v UCM area for MLWTOs is set in CMBUCMA (CMBUCMA set to 0
indicates single line WTO).

v UCM.MLWTO line type is set in CMBLINET (required for CMBUCMA
nonzero.)

Use of MLWTO formats of the parameter list is reserved for the
command processor.

Precautions must be taken not to issue a normal $WTO by the
command processor or any processor on which the command
processor waits from the time the first (control) MLWTO line $WTO is
issued until the last (END) MLWTO line $WTO is issued. A violation of
this rule might cause console lock out.

$WTO

332 z/OS V1R4.0 JES2 Macros

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|

|
|

|

|
|

|
|

|
|

|
|
|
|
|

CLASS=
Specifies the class of the message as one of the following:

$DOMACT
The message requires immediate action and is always written.

$ALWAYS
The message is essential and is always written.

Note: Issue $DOM to empty a full console message buffer (CMB).

$ACTION
The message requires eventual operator action.

$NORMAL
The message is considered important to normal computer operations.

$TRIVIA
The message is considered unimportant to normal computer operations.

If this operand is omitted, $NORMAL is assumed.

The $DOMACT specification is reserved for $WTOs issued to logical
consoles. On return from $WTO processing, register 1 contains the address
of the console message buffer (CMB) containing the message. The CMB is
retained in the system until a corresponding $DOM is executed using the
returned pointer.

DOMTERM=
Enables you to specify whether an outstanding action message is to be
deleted after the issuing task terminates.

YES
To delete this outstanding action message after the issuing task
terminates, code DOMTERM=YES or omit DOMTERM=. You must also
code CLASS=$DOMACT.

When issuing a message for which DOMTERM=YES has been
specified, JES2 uses descriptor code 7 in addition to currently used
descriptor codes.

YES is the default.

NO
If you want this outstanding action message to still be displayed after
the issuing task terminates, code DOMTERM=NO.

PRI=
Specifies the priority of the message as one of the following:

$HI
High priority

$ST
Standard priority

$LO
Low priority

If this operand is omitted, $ST priority is assumed.

$WTO

Chapter 3. JES2 Programmer Macros 333

|
|

|
|

|
|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|

Notes:

1. MF=L specifies the list form of the $WTO macro instruction. MF=L or MF=E are
forms of the $WTO macro instruction that allow the predefinition of parameter
lists similar to MVS supervisor services macros specified with the “execute” or
“list” forms.

2. MF=LX specifies the extended list form of the $WTO macro instruction.
MF=(E,name) specifies the extended execute form of the $WTO macro
instruction using a remote control program parameter list. MF=(EX,name)
specifies the execute form of the $WTO macro instruction using a remote
control program parameter list.

3. MF=LX or MF=EX are extended forms of MF=L or MF=E, respectively. These
extended forms allow you to specify the $WTO macro instruction without using
$GETCMB, formatting the CMB in detail, and using $WTO CMB=YES.

4. The CMBTO field in the CMB can be filled out to route messages to another
node in the JES2 network or to another member in the multi-access spool JES2
complex. Field CMBUCM can be set to indicate not only the console id, but also
the console area. MLWTOs can be used with explicit route and descriptor
codes. To do this, you must format the console area with the CMB mapping and
the MF=EX form of the $WTO macro instruction.

5. The MF=LX form of the $WTO macro instruction only allows explicit route codes
via ROUTE=B'xxxxxxxxx...' or X'xxxx'. Descriptor codes cannot be specified
using the MF=LX form of the $WTO macro.

6. The CMB mapping starts with the CMBFLAG field and not the CMBDSECT
field.

Environment
v Main task or user task.
v $WAIT can occur depending on how WAIT= is specified.

$XECBSRV – Interface for Extended Event Control Block (XECB)
Services

This macro invokes a JES2 service that manipulates extended ECBs (XECB). This
macro establishes a relationship between an XECB and a PCE. Use $XECBSRV in
time-critical applications when waiting for a POST of an XECB could cause the
system to drop into a wait state.

Also, use this macro when you create a routine to service multiple events. Use your
service routine could then test to see which XECB was posted and perform the
appropriate processing.

Format Description

FUNCTION=
Specifies the function requested.

SETUP
Specify SETUP to relate an XECB with a PCE. When the XECB is posted,

ÊÊ
symbol

$XECBSRV FUNCTION= SETUP
CLEAR

,XECB= addrx ÊÍ

$WTO

334 z/OS V1R4.0 JES2 Macros

||||||||||||||||||||||||||||

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

JES2 issues a POST of the PCE that issued this macro. After issuing this
macro, the caller should determine if the XECB has already been posted
during the macro execution.

CLEAR
Removes an XECB you previously setup or for which you issued a $WAIT
from all JES2 work chains. Use this function if your routine no longer
requires the XECB.

XECB=
The address of the XECB to setup or clear.

This is a required parameter.

Environment
v JES2 main task.
v $WAIT can occur.

$XMPOST – POST Task in Another Address Space
Use $XMPOST to POST a task in another address space.

Format Description

element
If XMPLIST=NO

Specifies a register which contains the address of an ECB that is to be
cross-memory posted, or specifies the actual ECB itself

If XMPLIST=YES
specifies the address of a three word POST element formatted as
follows:

+0 Address of error return

+4 Address of ECB to be POSTed

+8 Address of related ASCB

If LOSTPOST=CHECK:

+C ECB to be posted

QUICK=
Specifies whether (YES) or not (NO) JES2 should attempt a “quick post” of the
event control block (ECB).

Note: A quick post of an ECB causes JES2 to attempt to set the POST flag in
the ECB before JES2 does a $WAIT for the ECB. If you require a quick
post, be certain that the ECB resides in addressable storage (that is, the
ECB must be in either common storage or private storage of the same
address space).

ÊÊ
symbol

$XMPOST element-addrx
symbol(R1) YES

,QUICK= NO

Ê

Ê
YES

,XMPLIST= NO
,ERRET=addrx NOCHECK

,LOSTPOST= CHECK

ÊÍ

$XECBSRV

Chapter 3. JES2 Programmer Macros 335

XMPLIST=
Specifies whether the value specified for the first positional parameter is a cross
memory parameter list (YES) or an ECB (NO). If XMPLIST=NO is coded, the
asid to be posted is assumed to be that of JES2. The default for this parameter
is YES.

ERRET=
Specifies the address of an error routine that is to get control if a control block
error is detected or the control block is not verified.

LOSTPOST=
Specifies whether (CHECK) or not (NOCHECK) JES2 should attempt to detect
whether or not a cross memory post was lost.

LOSTPOST=CHECK
Can only be specified if ’QUICK=YES’ is specified (or defaulted) and
’XMPLIST=YES’ is specified (or defaulted).

Environment
v All environments.
v $WAIT cannot occur.

$XMPOST

336 z/OS V1R4.0 JES2 Macros

Appendix A. Using JES2 Table Pairs

What Are JES2 Table Pairs?
Table pairs provide a facility to modify, delete, or add JES2 processing and/or
function. Changes made to JES2 processing using table pairs are generally less
prone to error than are changes made through installation exits because JES2
macros generate the tables and generally requires you to write less executable
code.

The term table pair is actually a misnomer; it is a representation of three pointers to
the following three distinct sets of tables:

v JES2 tables - These are the tables defined by JES2, which are shipped by IBM,
and provide the default processing specifications. There is (at most) one set of
JES2 tables per table pair.

v Dynamic tables - These tables are defined by installations or vendor products
and are automatically associated with the table pair when the module in which
they reside is loaded (using the LOAD(xxxxxxxx) initialization statement). They
are used to extend, modify, add to, or delete the default processing
specifications, and in most cases override the processing specified in the JES2
tables. The number of dynamic tables associated with a table pair is unrestricted.

v User tables - These tables are defined by installations or vendor products. They
are used to extend, modify, add to, or delete default processing, and in most
cases override the processing specified in the JES2 and dynamic tables. There is
(at most) one set of user tables per table pair.

To use the table pairs, you must provide user or dynamic tables to be associated
with a particular table pair. You can also create new table pairs (using the $PAIR
macro), but this requires that you either link-edit them with JES2 modules or define
the table addresses to JES2. Dependent on the table(s) you choose, using table
pairs generally takes less detailed knowledge of JES2 code, function, and control
block structure and content than does the writing of an exit.

Table pairs do not replace the need for exits. Table pairs and exits can provide
added capability either independently or in conjunction with one-another.

JES2 Table Pairs Versus JES2 Exits
When you code exit points you may be modifying JES2 processing or function,
adding installation processing or function, or deleting some JES2 processing or
function. The services available, and the environment where the exit is called all
affect what you are capable of achieving at a particular exit point. Therefore, there
may be an exit point where you are capable of modifying JES2 processing but
where you are not capable of deleting JES2 function or adding installation function.

To use the exit facility, you must write exit modules to contain your exit routines.
Your modules can be link-edited with JES2 (in certain instances) or they can be
independent of JES2. (Best general practice is to keep exits separate from JES2
modules and then use the LOAD initialization statement to define them to JES2.)
Coding exits requires detailed knowledge of JES2, its coding conventions, its
functions, capabilities, and its control blocks both in content as well as structure.

When you code table pairs, you can modify JES2 processing or function, delete
JES2 processing or function, or add installation processing or function. Unlike exit

© Copyright IBM Corp. 1988, 2002 337

points, you can modify, delete, or add function without restriction. However, IBM
does not recommend deleting JES2 function.

To use table pairs, you must create installation table pairs and possibly also
supporting routines, then either link-edit them with JES2 modules or define the table
addresses to JES2. If you wish to add an initialization statement to JES2, this
generally requires nothing more than a table entry to define the statement and
specification for where to place the input. If you require more specialized processing
than that supplied by JES2, then you can create supporting routines. Few of JES2’s
initialization and command tables require supporting pre-scan or post-scan
supporting routines.

Table pairs provide a structured mechanism to change JES2 processing that
imposes fewer constraints and less complexity than using exit points.

Concepts
Table pairs in JES2 begin with a router control block that contains the table pair.
The first address points to an installation table, the second address points to a
JES2 table, and the third address is an anchor for a chain of dynamic tables.

Figure 2 on page 339 shows a table pair that is associated with the following tables:

v An IBM-supplied table that describes the elements ‘TWO’, ‘FIVE’, and ‘SIX’.

v An installation table that describes the elements ‘ONE’, ‘TWO’, and ‘THREE’.

v A dynamic table describing the elements ‘THREE’ and ‘FOUR’.

v A dynamic table describing the element ‘FIVE’.

338 z/OS V1R4.0 JES2 Macros

JES2 uses these tables when it is processing the items ‘ONE’, ‘TWO’, ‘THREE’,
‘FOUR’, ‘FIVE’, and ‘SIX’.

1. First, JES2 isolates the item to process (for example, ‘ONE’, ‘TWO’, or
‘THREE’) in the input source data.

2. Next, JES2 goes to the router control block to find the table pair to use to
process the isolated item.

3. Then JES2 attempts to find the installation table. If the first table pair pointer is
non-zero, then JES2 assumes this value is the address of the installation table.
In this way, the installation table, if it exists, is always searched prior to the
JES2 table. Initially all installation table pair pointers are set to zero. The
installation table is optional and does not exist unless you create it.

If the item to process is located in the installation table, then processing
continues using the installation table entry.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

V (INST TABLE)

Installation
Table

Dynamic
Table

Dynamic
Table

JES2
Table

V (JES2 TABLE)

TABLE START

TABLE END

TABLE START

TABLE END

TABLE START

TABLE END

TABLE START

TABLE END

TABLE ’ONE’

TABLE ’TWO’

TABLE ’THREE’

TABLE ’THREE’

TABLE ’FOUR’

TABLE ’FIVE’

TABLE ’TWO’

TABLE ’FIVE’

TABLE ’SIX’

Router CB

TABLE
PAIR

($PAIR)

Figure 2. Table Pairs: A Diagrammatic View

Appendix A. Using JES2 Table Pairs 339

4. If the item is not found in the installation table, then JES2 searches the dynamic
tables. If the item to process is located in a dynamic table, then processing
continues using the dynamic table entry.

5. If the item to process was not found in either the installation table or the
dynamic tables, then JES2 searches the JES2 table. If the item to process is
found in the JES2 table, then processing continues using the JES2 table entry.
If the item is not found in the JES2 table, then JES2 issues an error message.

Therefore, using the table arranged as described in Figure 2 on page 339, the input
items ‘ONE’, ‘TWO’, ‘THREE’, ‘FOUR’, ‘FIVE’, and ‘SIX’ are all processed. Assume
they are encountered in that order.

1. First, the input item ‘ONE’ is processed. The item ‘ONE’ is located and isolated
in the input stream. Next, the address of the installation table is found from the
table pair in the router control block. The installation table is searched by
examining each table element for a match for the input ‘ONE’. In this example,
the first table element matches the input. This table element is used by JES2 to
process the input ‘ONE’. Notice that the JES2 table does not include a table
element that describes ‘ONE’. Therefore, the installation has added some
processing or function to JES2 without modifying any JES2 code.

2. Next, the input item ‘TWO’ is processed. The item ‘TWO’ is located and isolated
from the data handed to JES2. Next the address of the installation table is
found from the table pair in the router control block. The installation table is
searched by examining each table element for a match for the input ‘TWO’. In
this example, the table element that matches the input is found later in the
installation table. This table element is used by JES2 to process the input
‘TWO’. Notice that the JES2 table includes a table element that describes
‘TWO’. Because a match was found in the installation table, JES2 never
searched the JES2 table. Thus, the installation has replaced or modified some
processing or function without modifying any JES2 code.

3. Next, the input item ‘THREE’ is processed. Again, the table entry for ‘THREE’ is
found in the installation table. Notice that one of the dynamic tables also
includes a table element for ‘THREE’. Because a match was found in the
installation table, JES2 never searched the dynamic tables. Thus, the
installation has replaced or modified some processing or function provided in
those dynamic tables (which may have been provided, for example, by a vendor
product) without actually modifying those tables.

4. Next, the input item ‘FOUR’ is processed. The item ‘FOUR’ is located and
isolated from the data handed to JES2. Next the address of the installation table
is found from the table pair in the router control block. The installation table is
searched by examining each table element for a match on the input ‘FOUR’. In
this example, there is no match in the installation tables, so processing
continues by searching the dynamic tables for an element that matches ‘FOUR’.
An element matching ‘FOUR’ is found in the dynamic tables, so that element is
used by JES2 to process the input ‘FOUR’. In this case there is no entry in the
JES2 table matching ‘FOUR’, so this example represents function added by a
dynamic table.

5. Next, the input item ‘FIVE’ is processed. The item ‘FIVE’ is located and isolated
from the data handed to JES2. Next the address of the installation table is
found from the table pair in the router control block. The installation table is
searched by examining each table element for a match on the input ‘FIVE’. In
this example, there is no match in the installation tables, so processing
continues by searching the dynamic tables for an element that matches ‘FIVE’.
An element matching ‘FIVE’ is found in the dynamic tables, so that element is
used by JES2 to process the input ‘FIVE’. In this case there is an entry in the

340 z/OS V1R4.0 JES2 Macros

JES2 table matching ‘FIVE’, therefore, this example represents function that has
been replaced through use of a dynamic table.

6. Finally, the input item ‘SIX’ is processed. The item ‘SIX’ is located and isolated
from the data handed to JES2. Next the address of the installation table is
found from the table pair in the router control block. The installation table is
searched by examining each table element for a match for the input ‘SIX’. In
this example, there is no element that matches the input of ‘SIX’ in the
installation table. Therefore, processing continues by searching the dynamic
tables for an element that matches ‘SIX’. When no matching element is found in
the dynamic tables, the search continues in the JES2 table. When this table
element is found in the JES2 table, the input ‘SIX’ is processed by this table
element.

Deleting a table element is done by providing a null installation table that matches
the JES2 table but provides no function.

IBM does not recommend that you delete JES2 tables.

If the installation table pointer is zero then no installation table exists, and JES2
uses the JES2 table to attempt to process the input. If the JES2 table pointer is
zero, then the input must be found in the installation table or else the input is
marked as incorrect.

The router control block contains one or more table pair addresses. The installation
table fields of the table pair are defined as weak external V-type address constants.
Therefore, installation tables can be link-edited with JES2 to have the linkage editor
resolve the installation table addresses. If the installation table is not link-edited with
JES2 then you must fill in the address of its table into the first of the correct table
pairs.

The JES2 table entries are defined as V-type address constants. The linkage editor
places the JES2 table addresses into the table pairs.

The dynamic table entries do not point to the dynamic tables directly. You should
not modify the dynamic table entry yourself. The dynamic table entry is
automatically established when a module containing a dynamic table is loaded via
the LOAD(xxxxxxxx) initialization statement. Two separate dynamic tables override
each other based on the order of LOAD(xxxxxxxx) statements. The first LOAD
takes precedence over the second, and so on.

You should attempt to isolate as many of your installation-specific modifications as
possible within user modules. JES2 provides user fields in a number of the
commonly modified control blocks. For example, the UCT (user communication
table) is effectively an extension of the HCT (HASP communication table). Other
extension points are the tables that define processor control elements (PCEs),
daughter task elements (DTEs), trace ID tables (TIDTABs), and the scan facility.
These “extensions” should not reside within JES2 inline code, but rather in a user
module or dynamic storage area accessed through installation exits. By using
installation exits and JES2 macros, you can build fields to point to your own user
tables to override the default JES2 tables. This eliminates the need to directly
modify JES2 control blocks or copy JES2 code into user modules.

The JES2 table provides the default processing specifications. If you do not extend
this table, JES2 will remain unmodified. However, if you choose to fill in the user
table of the table pair you will be adding new function or overriding those JES2
specifications with what you have provided in the user table. For example, JES2

Appendix A. Using JES2 Table Pairs 341

has specified that the minimum length of the RANGE parameter on the PRT(nnnn)
initialization statement must be 5 (that is, all five characters must be coded). You
can change this requirement by overriding the JES2 table by coding your own
RANGE table entry. If you prefer the minimum number of characters to be 3, you
could then code either RAN, RANG, or RANGE when specifying this parameter.

Master Control Table
The master control table ($MCT) contains all of the table pairs in JES2. The $MCT
contains the table pair pointers for:
v Processor creation (PCEs)
v Subtask creation (DTEs)
v Device definitions (DCTs)
v Trace identifiers
v Initialization options (for example, COLD, NOREQ, WARM, and so on)
v Main parameter statements (for example, CKPTDEF, SPOOLDEF, and so on)
v Operator commands (for example, $D CKPTDEF, $T SPOOLDEF , and so on)
v Work selection options.
v Block Extension Reuse Tables (BERTs)

The master control table ($MCT) is pointed to from the $HCT field $MCT.
Addresses of the installation tables can be resolved by either link-editing the
installation table with JES2 or by placing the address of the installation table into
the $MCT through an exit. You can use Exit 0 for this purpose. Addresses of
dynamic tables are resolved via the LOAD(xxxxxxxx) initialization statement. When
the module containing the dynamic table is loaded, the dynamic table is linked to
the appropriate table pair.

General Table Coding Conventions
All tables that you may build already have a JES2 counterpart available as an
example in the JES2 code. The table type is defined by the corresponding macro,
that is, use $PCETAB to build a PCE table, $SCANTAB to build a scan table. Each
JES2 table begins with a TABLE=HASP specification. To code a user table, begin
with a $xxxTAB TABLE=USER specification (where xxx can be defined as SCAN,
PCE, DCT, DTE, TID, BERT, and WS). To code a dynamic table, begin with a
$xxxTAB TABLE=DYNAMIC specification. Subsequent lines are added to specify
the statement, command, or processor that you are defining, such as the PCE
name and the module containing the processor’s code for a PCE table entry or the
valid parameter length and range in a SCAN table entry. Each table is then ended
by coding a $xxxTAB TABLE=END statement.

Dynamic Tables Versus Installation Tables
As previously stated, JES2 may be extended via either the creation of a user table
or a dynamic table. Which type of table to use for a specific extension depends on
your needs. The following is a comparison of the advantages and disadvantages of
each type.

v User Table

– Only a single user table is allowed.

– The user table is linked to the table pair by one of the following:
- The linkage editor, by naming the table USERxxxT and link-editing the table

with the HASJES20 load module.
- An installation exit (such as exit 0), which stores the address of the table in

the field MCTxxxTU.

– The user table overrides the JES2 table and all dynamic tables.

342 z/OS V1R4.0 JES2 Macros

v Dynamic Table

– An unlimited number of dynamic tables may be provided.

– The dynamic table is linked to the table pair automatically when the load
module containing it is loaded via the LOAD(xxxxxxxx) initialization statement.

– The dynamic table overrides the JES2 table but may be overridden by the
user table.

IBM recommends that vendor products use dynamic tables for the following
reasons:
v Your installation is not required to take any extra action to include the tables,

such as merging them with your own or other vendors’ tables.
v The dynamic tables can be easily overridden by a user table.

You can use either dynamic or user tables if you code your own tables. If you want
to create separate sets of tables for different functions, you can use dynamic tables.
If you want to override a dynamic table provided by a vendor, you can use a user
table.

Examples of Table Pairs
The remainder of this appendix is a series of examples of table pairs. The
examples provide:.
v The purpose of the table or function.
v A description of supporting control blocks and macros
v A description of what the table contains using a JES2 table element.
v Descriptions of the creation of installation tables and table element.

Appendix B, “Table Pairs Coding Example” on page 373 contains coded examples
of the specific installation sample. These examples are interrelated to show how the
tables can be used together. The examples show what you can do, not necessarily
what you should do.

Processor Control Elements (PCE) Tables
The processor control elements tables can add installation processors (PCEs) to a
JES2 system or override JES2 processors.

The JES2 PCE tables represent units of JES2 work. The JES2 dispatcher gives
control to a PCE. No other PCE gains control until, and unless, this PCE directly
relinquishes control. This is done when JES2 issues a $WAIT. When a $WAIT is
done, control passes to the JES2 dispatcher, which saves the registers in the PCE
control block that represents the JES2 processor and then dispatches another JES2
processor. A JES2 processor is ineligible for dispatching until it is $POSTed.

PCEs can be generated during JES2 initialization or after initialization. Therefore,
you can specify that a processor be created and be present for the life of JES2 or
that it be created only upon installation demand (that is, after initialization).

You can also specify when the processor is given control. For example, you can
specify if you want a processor to be given control concurrent with the HASPWARM
processor for final initialization processing. Or, you can specify that the installation
processor doesn’t need to take control until initialization has completed but
concurrent with the other JES2 processors. You can also indicate that a processor
only gets control when it is $POSTed for work.

Appendix A. Using JES2 Table Pairs 343

Processors can also be associated with a device by pointing to a particular DCT
table from the PCE table. This is a one-to-one correspondence, that is, one PCE is
associated with one device.

PCE Control Blocks and Macros
The $MCT table pair MCTPCETP points to JES2, installation, and dynamic PCE
tables. The $MCT field MCTPCETH points to the JES2 PCE table. The JES2 PCE
table name is HASPPCET. The $MCT field MCTPCETU points to the address of the
installation table, if such a table exists.

The $PCETAB macro builds both the JES2 and installation tables and table
elements. This macro also contains the mapping macro for the PCE table and
element. The $PCEDYN macro invokes the $PCEDYN service to provide JES2 a
mechanism to dynamically attach and detach processors.

The $GETABLE macro invokes the $GETABLE service routine to obtain a table
element from the JES2 table or the installation table. To obtain a PCE table, code
TABLE=PCE operand. This macro returns the table element of the specified ID or, if
LOOP is specified, return the next table element after the specified identifier.

The PCE control block contains fields that are required on a processor basis within
the JES2 main task. The PCE is composed of a common section and an optional
variable length section that is unique between processor types and contain
processor specific information. The various processor types in JES2 include: input,
JCL conversion, execution, output, print, and purge.

Register 13 in the JES2 main task points to the PCE common section which
includes an OS-style save area at the top. In the PCE control block there are two
installation-reserved fields, PCEUSER0 and PCEUSER1, in the common section.

Figure 3 illustrates the contents of a PCE. The common area contains the OS-style
save area at the top, followed by those fields that are common for all types of
processors.

The variable length extension area is an optional extension to the common area
that contains PCE-type specific information. Thus, the PCE extension for the reader
PCE would be the same as other reader PCEs but different from the printer PCE
extension area. The size of this extension area is specified on the PCE table.

COMMON PCE AREA
┌──┐
│ │
│ │
│ OS STYLE SAVE AREA │
│ │
│ FIELDS COMMON FOR ALL PROCESSORS │
│ │
│ │
├──┤
│ │
│ │
│ VARIABLE LENGTH EXTENSION │
│ │
│ │
└──┘

Figure 3. Common PCE Area Structure

344 z/OS V1R4.0 JES2 Macros

JES2 processors maintain control of JES2 processing until they issue a $WAIT
macro. When the $WAIT macro is issued, the JES2 dispatcher receives control and
places the PCE on a queue for the requested resource. In JES2, the total number
of resource queues is defined in $HASPEQU through the equate named
$DRTOTAL. $DRTOTAL is defined for 64 resource queue chains. When the
processor issues a $WAIT macro with a 1- to 5-character resource name, the
macro and dispatcher place the processor on that $DRxxxxx queue, where
$DRxxxxx is one of up to 64 resource names defined with an equate. JES2
resources start at 0 and increase; installation resource queues start at 63 and
decrease.

Therefore, if a processor issued a ‘$WAIT SCTY’, the dispatcher would place the
processor on the wait queue defined as $DRSCTY. ‘SCTY’ is an installation
resource. This processor remains on this queue until a $POST SCTY is done.
When the $POST is done, the processors on the $DRSCTY wait queue are put on
the JES2 ready queue to be dispatched by the JES2 dispatcher.

All save areas in the JES2 main task are chained from a PCE. The PCE contains
the PSV (PCE save area) that maps save areas chained from the PCE as well as
the save area in the PCE itself. JES2 $SAVE and $RETURN services manage save
areas chained off the PCE. The JES2 dispatcher uses the PCE save area for MVS
service calls to save current register contents when the processor is $WAITed.

To run the JES2 save areas, use field PCELPSV which points to the last (most
recent) save area chained from the PCE and use PSVPREV in that save area to
point to the previous save area. Do not use PSVNEXT from the PCE because MVS
services, the JES2 dispatcher, or HASPSSSM may overlay this field.

JES2 save areas are similar to standard OS save areas in format, but not in the
way they are used and accessed. Be aware that:

v Register 13 does not point to an available save area in the JES2 main task. You
can do a STM into register 13, but the correct approach would be to do a $SAVE
to obtain a JES2 save area and save the registers in the JES2 main task
environment.

v You cannot use register 13 to follow the chain of save areas from the JES2 main
task, because register 13 is kept as an available save area for calls to MVS
services, not JES2 routines.

v The save area format is different in that there are extra words on the end of
JES2 save areas that JES2 uses to point to the PCE (PSVPCE) and the $SAVE
identifier at the location where the $SAVE was issued (PSVLABAD).

Figure 4 on page 346 (Part 1) illustrates the chaining for JES2 save areas. The
PCE field PCELPSV points to the last (most recent) JES2 save area. By using
PSVPREV, the save areas can be chained back to the PCE. The save area in the
PCE is available for use by other services that require OS-style save areas.

You can use the PCE field PSVPCE from any JES2 save area to obtain the PCE
address as illustrated in Figure 4 on page 346 (Part 2). While running the JES2
save areas, the PSVNEXT field is valid. However, do not use this field from the
PCE; it may not be valid.

Appendix A. Using JES2 Table Pairs 345

A JES2 PCE Table
Figure 5 on page 347 presents the JES2 PCE table. The table name is HASPPCET;
the same as that specified in the V-type address constant in the $MCT. The table is
delimited by TABLE=HASP (to start of the table) and TABLE=END (to end of the
table). The table element shown represents all the information that JES2 needs to
define a JES2 reader processor. This table element is passed to the $PCEDYN
service to create the reader PCE.

Specifying whether it is a JES2 or an installation table determines default values for
the ENTRYPT and CHAIN $PCETAB operands. When $PCETAB is specified with
operands other than TABLE=, the macro generates a table element. All JES2 PCEs
are defined within this single table.

┌──────────┐
│ R13 │──┐
└──────────┘ │
┌─────────────┘
├─────────────┐ ┌────────────┐
│ ┌────────┐ │ │ ┌────────┐ │ ┌────────┐
└Ê│ PCE │ │ └Ê│ SAVE │ │ │ SAVE │Í─┐
│PSVPREV │ └───│PSVPREV │ └──│PSVPREV │ │
│PSVNEXT │ │PSVNEXT │ │PSVNEXT │ │
│ │ │ │ │ │ │
│ SAVE │ │ SAVE │ │ SAVE │ │
│ AREA │ │ AREA │ │ AREA │ │
│ │ │ │ │ │ │
│PSVPCE │ │PSVPCE │ │PSVPCE │ │
│PCELPSV │──┐ │PSVLABAD│ │PSVLABAD│ │
└────────┘ │ └────────┘ └────────┘ │

└─────────────────────────────┘

Figure 4. PCE Tables - Save Area Chaining (Part 1 of 2)

┌──────────┐
│ R13 │──┐
└──────────┘ │
┌─────────────┘
└Ê┌────────┐ ┌────────┐ ┌────────┐
┌Ê│ PCE │ │ SAVE │ ┌─Ê│ SAVE │
│ │PSVPREV │ │PSVPREV │ │ │PSVPREV │
│ │PSVNEXT │ │PSVNEXT │─┘ │PSVNEXT │─Ê0
│ │ │ │ │ │ │
│ │ SAVE │ │ SAVE │ │ SAVE │
│ │ AREA │ │ AREA │ │ AREA │
│ │ │ │ │ │ │
├─│PSVPCE │ ┌─│PSVPCE │ ┌─│PSVPCE │
│ │PCELPSV │ │ │PSVLABAD│ │ │PSVLABAD│
│ └────────┘ │ └────────┘ │ └────────┘
└───────Í───────┴─────────Í───┘

Figure 4. PCE Tables - Save Area Chaining (Part 2 of 2)

346 z/OS V1R4.0 JES2 Macros

An Installation PCE Table
Figure 6 illustrates an installation PCE.

A Dynamic PCE Table
Figure 7 on page 348 illustrates an alternative method of defining the installation
table in Figure 6 through use of a dynamic table.

HASPPCET $PCETAB TABLE=HASP
$PCETAB NAME=...

RDRPCET $PCETAB NAME=RDR,
DESC=’READER’ X
DCTTAB=RDRDCTT, X
MODULE=HASPRDR, X
ENTRYPT=MAPRDRA, X
CHAIN=$RDRPCE, X
COUNTS=$NUMRDRS, X
MACRO=$RDRWORK, X
WORKLEN=RDWLEN, X
GEN=INIT, X
DISPTCH=WARM, X
PCEFLGS=0, X
FSS=NO, X
PCEID=(PCELCLID,PCERDRID)

$PCETAB NAME=...
$PCETAB TABLE=END

Figure 5. The JES2 PCE Table

USERPCET $PCETAB TABLE=USER
SCTYPCET $PCETAB NAME=SCTY,

DESC=’SECURITY’ X
DCTTAB=*-*, X
MODULE=HASPXJ00, X
ENTRYPT=UCTMSCTY, X
CHAIN=UCTSYPCE, X
COUNTS=UCTSYNUM, X
MACRO=$SCYWORK, X
WORKLEN=SCYLEN, X
GEN=INIT, X
DISPTCH=WARM, X
PCEFLGS=0, X
FSS=NO, X
PCEID=(0,UPCESCTY)

$PCETAB TABLE=END

Figure 6. Example of an Installation PCE Table

Appendix A. Using JES2 Table Pairs 347

To create the installation PCE table illustrated in Figure 6 on page 347 or Figure 7,
you need to code the following operands on the on the $PCETAB macro:

NAME=SCTY The name of the PCE

DESC=SECURITY The description of the processor. The word
‘PROCESSOR’ is appended to the end of the value
specified on the DESC operand.

DCTTAB=*-* An indicator that there was no DCT table and that the
processor is not associated with a device

MODULE=HASPXJ00 The name of the module to contain the processor
code

ENTRYPT=UCTMSCTY The field to hold the entry point address. The $UCT
field UCTMSCTY holds the address of the routine
USCTPCE

CHAIN=UCTSYPCE The name of the $UCT field to hold the pointer to the
first security PCE

COUNTS=UCTSYNUM Where the $PCEDYN service routine is to find out
how many PCEs of this type it can create and to keep
track of how many it has created.

MACRO=$SCYWORK The PCE’s own variable extension area The
$SCYWORK macro maps this extension area.

WORKLEN=SCYLEN The length of the variable extension area. SCYLEN is
an equate in the $SCYWORK macro.

GEN=INIT The indicator to generate the processor during
initialization.

DISPTCH=WARM The indicator that the processor should receive control
after warm start processing. This assumes that the
security processor is not be needed during warm start
processing.

MYPCETAB $PCETAB TABLE=DYNAMIC
SCTYPCET $PCETAB NAME=SCTY,

DESC=’SECURITY’ X
DCTTAB=*-*, X
MODULE=HASPXJ00, X
ENTRYPT=UCTMSCTY, X
CHAIN=UCTSYPCE, X
COUNTS=UCTSYNUM, X
MACRO=$SCYWORK, X
WORKLEN=SCYLEN, X
GEN=INIT, X
DISPTCH=WARM, X
PCEFLGS=0, X
FSS=NO, X
PCEID=(0,UPCESCTY)

$PCETAB TABLE=END

Figure 7. Example of a Dynamic PCE Table

348 z/OS V1R4.0 JES2 Macros

PCEFLGS=0 The indicator that the PCE has no special
requirements. The PCEFLGS operand specifies the
initial value the PCE PCEFLAGS field contains after it
is created by $PCEDYN. If the initial state of the
processor should be that it:

v Should be traced, specify PCETRACE.

v Should be marked as permanently exempt from
non-dispatchability, specify PCEDSPXP. If the
processor should never be marked
non-dispatchable, then set this value.

v Should be marked as temporarily exempt from
non-dispatchability, specify PCEDSPXT. This value
would be specified if some processing must be
completed by this processor that would fail if the
processor was marked non-dispatchable.

v Cannot wait in the case of an I/O error, then specify
PCENWIOP.

FSS=NO The indicator that the processor should not run in FSS
mode.

PCEID=(0,UPCESCTY) The indicator that this is a processor that is not
associated with a device. The identifier of the
processor is 255. Installation-specified identifiers
should start at 255 and decrease. JES2 processors
start at 1 and increase. Code an equate in the $UCT
named UPCESCTY and set it to 255. The PCEID
operand specifies the type and identifier of the
processor as follows:

Processor Type Meaning
0 Non-device processor
PCELCLID Local special PCE identifier
PCERJEID Remote special PCE identifier
PCENJEID Network special PCE id, indicates

NJE or XFE JT/JR/ST/SR
PCEINRID Initial special PCE identifier
PCEPRSID Printer special PCE identifier
PCEPUSID Punch special PCE identifier
PCEXFRID XFR special PCE identifier

Coding the Other Pieces
In addition to coding the installation PCE table, you need to:

v Write a HASPXJ00 module to hold the PCE code

v Create a macro called $SCYWORK to map the PCE extension. $SCYWORK
must contain a field named SCYLEN to define the length of the extension area.

v Code these fields in the installation $UCT:

– UCTMSCTY DC A(*-*) ADDR OF ENTRYPT

The address of the entry point for the HASPXJ00 module for the installation
PCE is held in the UCTMSCTY field.

– UCTSYPCE DC A(*-*) ADDR OF SCTY PCE

The address of the first security PCE is chained from the UCTSYPCE field.

– UCTSYNUM DC H‘1’,H‘0’

A two halfword field where the first field defines the number of security PCEs
that are to be created and the second indicates to $PCEDYN how many have
been created.

Appendix A. Using JES2 Table Pairs 349

– UPCESCTY EQU 255 ID OF SCTY PCE

The identifier of the PCE (set at 255)

– $DRSCTY EQU 63 DISP SEC RESOURCE

A dispatching security resource that tells the PCE that some work is ready for
it to process The installation PCE will ‘$WAIT SCTY’ (which will result in the
PCE being put on the resource queue of 63) for work. When there is work for
it to do, it is $POSTed for SCTY (that is, $DRSCTY = 63) and put on the
ready queue.

v Code Exit 0

The Exit 0 code is required to do three things.

– Obtain the $UCT and place the $UCTs address in the $HCT.

– Initialize the $UCT fields. The fields that must be initialized include, at least,
the UCTMSCTY, UCTSYPCE, and the first halfword of UCTSYNUM.

– Place the installation PCE table address in the MCTPCETU field in the $MCT
in module HASPTABS. This is not necessary for dynamic tables. Dynamic
tables should be linked to the table pair by placing a LOAD initialization
statement in your JES2 initialization stream for the module containing the
dynamic PCE table.

Daughter Task Element (DTE) Tables
The daughter task element tables represent subtasks in JES2. In JES2 subtasks do
work that may require MVS WAITs. MVS WAITs are not tolerated in the JES2 main
task.

The DTEs are tabular in the $DTETABs. This provides the capability to add
installation-defined subtasks and to override JES2 subtasks. We do not recommend
that you delete JES2 subtasks. The tables that define the JES2 subtasks reside in
the module, HASPTABS.

The DTE is available to the main task (a PCE processor) and the subtask and
assists communication between the two environments.

To serialize the communications between the main task and the subtask, follow
MVS dispatching methods. This involves the use of $WAITs and MVS POSTs from
the main task and MVS WAITs and POSTs from the subtask. Never issue an MVS
WAIT from the JES2 main task and never issue a JES2 $WAIT from a JES2
subtask.

DTE Control Blocks and Macros
The $MCT table pair MCTDTETH points to JES2, installation, and dynamic DTE
tables. The $MCT field MCTDTETH points to the JES2 DTE table. The JES2 table
name is HASPDTET. The $MCT field MCTDTETU contains the address of the
installation table, if such a table exists.

The $DTETAB macro builds both the JES2 and installation tables and table
elements. This macro also contains the mapping macro for the DTE table and
element. The $DTEDYN macro using the $DTEDYN service provides JES2 a
mechanism to dynamically attach and detach subtasks.

The $GETABLE macro invokes the $GETABLE service routine to obtain a table
element from JES2 table or installation table. To obtain a DTE table, code the

350 z/OS V1R4.0 JES2 Macros

TABLE=DTE operand. This macro returns the table element of the specified ID or, if
LOOP is specified, it will return the next table element after the specified ID.

The DTE contains fields that are required on a subtask basis within the JES2
subtasks. The DTE is composed of a common section and an optional variable
length section that is unique between subtask types and contain subtask-specific
information. The subtask names are: HASPIMAG, HOSALLOC, HOSPOOL,
HASPACCT, HASPVTAM, HASPWTO, HOSCNVT, HASPOFF, HASPCKCF, and
HASPCKVR.

Register 13 in the JES2 subtask points to the DTE which is an available save area.

The following four fields are used for subtask recovery:

v $STABNDA - this field in the $HCT contains the address of the general subtask
recovery routine. If you code an ESTAE (highly recommended), use this routine
as the recovery routine. This recovery routine takes three “exit” calls, depending
upon whether the following three fields are nonzero.

v DTEVRXAD - this field in the DTE contains the address of a VRA “exit” routine
which receives control from the JES2 general subtask recovery routine to
complete the variable recording area (VRA) in the SDWA. In this way,
subtask-specific data is saved.

v DTERTXAD - this field in the DTE contains the address of a retry routine which
receives control to attempt to retry. The general JES2 recovery routine issues a
SETRP to a general retry routine. This general retry routine then gives control to
the specified retry routine for this subtask. The subtask retry routine should issue
a $SETRP to a resumption point or percolate. If the subtask is to retry or
percolate, the retry routine should prepare for the event.

v DTESXAD - this field in the DTE contains the address of a clean-up routine
which receives control from the JES2 general subtask recovery routine to attempt
subtask-specific clean-up. There are two valid return codes from this recovery
routine:
– 0 - continue normal recovery, clean-up successful
– 4 - unrecoverable subtask error, abend JES2 main task a CALLRTM.

There are pointers in the $HCT for the JES2 subtasks (DTEs) for each type of
subtask. The chain heads are:
v 0 - no subtasks for this type exist
v $DTEIMAG - points to the image subtask(s)
v $DTEALOC - points to the allocation subtask
v $DTESPOL - points to the spool subtask(s)
v $DTESMF - points to the SMF subtask
v $DTEVTM - points to the VTAM subtask
v $DTEWTO - points to the WTO subtask
v $DTECNVT - points to the converter subtask(s)
v $DTEOFF - points to the offload subtask(s)
v $DTESTID - this field contains the subtask identifier.
v $DTECKCF - points to the checkpoint on CF subtask
v $DTECKVR - points to the checkpoint versions subtask

A JES2 DTE Table
Figure 8 on page 352 illustrates the JES2 DTE table. The table name is
HASPDTET; the same as that specified in the V-type address constant in the $MCT.
The table is delimited by a TABLE=HASP (to start the table) and a TABLE=END (to
end the table). The table element shown represents all the information that JES2

Appendix A. Using JES2 Table Pairs 351

needs to define a JES2 converter subtask. This is the table element that is passed
to the $DTEDYN service to create the converter DTE. Whether it is a JES2 or an
installation table determines some default values for the EPLOC and HEAD
$DTETAB operands. When you specify $DTETAB with operands other than
TABLE=, the macro generates a table element. When the TABLE=END is
encountered, the table is closed.

All JES2 subtasks are defined within this single table.

An Installation DTE Table
Figure 9 illustrates an installation DTE table.

A Dynamic DTE Table
Figure 10 on page 353 illustrates an alternative method of defining the installation
tabke in Figure 9 through the use of a dynamic table.

HASPDTET $DTETAB TABLE=HASP
$DTETAB NAME=...
$DTETAB NAME=CONVERT,

ID=DTEIDCNV, X
EPNAME=HOSCNVT, X
EPLOC=MAPCNVA, X
HEAD=$DTECNVT, X
WORKLEN=DCNVLEN, X
GEN=NO, X
STAE=NO, X
SZERO=NO

$DTETAB NAME=...
$DTETAB TABLE=END

Figure 8. The JES2 DTE Table

USERDTET $DTETAB TABLE=USER
$DTETAB NAME=SECURITY, X

ID=UDTESCTY, X
EPNAME=USCTDTE, X
EPLOC=UCTMDSCY, X
HEAD=UCTSYDTE, X
WORKLEN=SCDLEN, X
GEN=NO, X
STAE=NO, X
SZERO=YES

$DTETAB TABLE=END

Figure 9. Example of An Installation DTE Table

352 z/OS V1R4.0 JES2 Macros

To create the installation DTE table illustrated in Figure 9 on page 352 or Figure 10,
you need to code the following on the $DTETAB macro:

NAME=SECURITY The name of the subtask used in JES2 messages

ID=UDTESCTY The identifier of the processor. Installation specified
identifiers should start at 255 and decrease because
JES2 subtask identifiers start at 0 and increase. There
is an equate specified in the $UCT named
UDTESCTY set to 255.

EPNAME=USCTDTE The name of the entry point to the subtask code in
module HASPXJ00 JES2 uses USCTDTE on the
MVS IDENTIFY call. The field that holds the entry
point address, UCTMDSCY, is in the $UCT. It will hold
the address of the routine USCTDTE. Therefore, code

EPLOC=UCTMDSCY The entry point address in the $UCT. It contains the
address of the routine USCTDTE.

HEAD=UCTSYDTE The name of the chain field. The $UCT field to hold
the pointer to the first security subtask is UCTSYDTE.

WORKLEN=SCDLEN The length of the variable extension area of the
security subtask is defined via an equate called
SCDLEN in macro $SCDWORK.

GEN=NO The indicator that the processor should not be
generated automatically.

STAE=NO The indicator that the subtask is not to be detached
with the STAE operand specified on the MVS
DETACH call specify

SZERO=YES The indicator that the subtask shares subpool 0.

Coding the Other Pieces
In addition to coding the installation DTE table, you need to:

v Write a HASPXJ00 module that holds the DTE subtask code

v Create a macro called $SCDWORK to map the DTE extension. An equate
named SCDLEN is required within the macro to define the length of the
extension area needed.

v Code two fields and one equate in the installation $UCT

– UDTESCTY EQU 255 ID OF SCTY DTE

An equate for the identifier of the subtask. We specify the equate UDTESCTY
with a value of 255.

MYDTETAB $DTETAB TABLE=DYNAMIC
$DTETAB NAME=SECURITY,

ID=UDTESCTY, X
EPNAME=USCTDTE, X
EPLOC=UCTMDSCY, X
HEAD=UCTSYDTE, X
WORKLEN=SCDLEN, X
GEN=NO, X
STAE=NO, X
SZERO=YES

$DTETAB TABLE=END

Figure 10. Example of a Dynamic DTE Table

Appendix A. Using JES2 Table Pairs 353

– UCTMDSCY DC A(*-*) ADDR OF ENTRYPT

The address of the entry point for the HASPXJ00 module for the installation
DTE

– UCTSYDTE DC A(*-*) ADDR OF SCTY DTE

The address of the first security DTE

v Code Exit 0 code. Exit 0 must:

– Obtain the $UCT and place the $UCT’s address in the $HCT.

– Initialize the $UCT.

– Place the installation DTE table address in the MCTDTETU field in the $MCT
in module HASPTABS. This is not necessary for dynamic tables. Dynamic
tables should be linked to the table pair by placing a LOAD initialization
statement in your JES2 initialization stream for the module containing the
dynamic DTE table.

Work Selection (WS) Tables
The WS tables are used to add installation work selection criteria to a JES2 system
or override JES2 work selection criteria in JES2.

WS Control Blocks and Macros
The $MCT table pairs for work selection tables are MCTPRWTP for printers,
MCTPUWTP for punches, MCTJTWTP for offload job transmitters, MCTJRWTP for
offload job receivers, MCTSTWTP for offload sysout transmitters, MCTSRWTP for
offload sysout receivers, MCTLJWTP for NJE line job transmitters, and MCTLSWTP
for NJE line sysout transmitters. If you want to create a dynamic work selection
table for one of these device types, you should code $WSTAB
TABLE=(DYNAMIC,pair-offset), where pair-offset is a valid table pair for a work
selection table. You may list multiple table pairs if the work selection tables are to
be associated with multiple device types.

The $MCT fields for installation work selection tables are MCTPRWTU for printers,
MCTPUWTU for punches, MCTJTWTU for offload job transmitters, MCTJRWTU for
offload job receivers, MCTSTWTU for offload sysout transmitters, MCTSRWTU for
offload sysout receivers, MCTLJWTU for NJE line sysout transmitters, and
MCTLSWTU for NJE line sysout transmitters. If you want to link-edit an installation
table with JES2 you must name your tables USERPRWT for printers, USERPUWT
for punches, USERJTWT for offload job transmitters, USERJRWT for offload job
receivers, USERSTWT for offload sysout transmitters, USERSRWT for offload
sysout receivers, USERLJWT for NJE line job transmitters, and USERLSWT for
NJE line SYSOUT transmitters. The installation table must then be link-edited with
HASJES20. The JES2 WS tables are pointed to from the $MCT using the MCT
above and table names.

The $WSTAB macro builds both the JES2 and installation tables and table
elements. This macro also contains the mapping macro for the WS tables and
elements.

A JES2 WS Table
Figure 11 on page 355 illustrates the JES2 work selection table. The table name is
HASPPRWT; the same as that specified for the V-type address constant in the
$MCT. The table is delimited by TABLE=HASP (to start of the table) and
TABLE=END (to end of the table). The table element shown represents the
information that JES2 needs to define the JES2 criterion for JOBNAME. This is the

354 z/OS V1R4.0 JES2 Macros

table element that is passed to the $#GET service routine which returns eligible
JOEs for processing based upon the work selection list defined for the printer.

When $WSTAB is specified with operands other than TABLE=, the macro generates
a table element. All of the JES2 printer work selection criteria are defined within this
single table.

An Installation WS Table
Figure 12 describes an installation work selection criteria to select output that is
beyond a specified limit for offload processing.

During periods of peak spool use (for example, end of month or end of year
processing), you may be interested in using the spool offload facility to offload jobs
that are using a large amount of JES2 spool. To achieve this, you would like there
to be an additional work selection criterion on the offload SYSOUT transmitter. This
operand would indicate at what spool usage threshold a job would be when it would
be offloaded from the system.

Coding the installation work selection table involves deciding what values you want
to expose to your operators. For example, the work selection operand that is seen
and entered by the operators is TRKGRP, which indicates that work is selected
based on the number of track groups (spool space) that has been allocated to a
job.

A Dynamic WS Table
Figure 13 on page 356 illustrates an alternative method of defining a WS table from
Figure 12 through use of a dynamic table.

HASPPRWT $WSTAB TABLE=HASP
$WSTAB NAME=...
$WSTAB NAME=JOBNAME, X

MINLEN=3, X
FLD=JQEJNAME, X
CB=JQE, X
DEVFLD=DCTJOBNM, X
DEVCB=DCT, X
RTN=COMPARE

$WSTAB NAME=...
$WSTAB TABLE=END

Figure 11. The JES2 WS Table

USERSTWT $WSTAB TABLE=USER
$WSTAB NAME=TRKGRP, X

MINLEN=2, X
ALIAS=TG, X
FLD=JQETGNUM, X
CB=JQE, X
DEVFLD=DCTUSER0, X
DEVCB=DCT, X
RTN=WSTRKGRP

$WSTAB TABLE=END

Figure 12. Example of an Installation WS Table

Appendix A. Using JES2 Table Pairs 355

Coding the installation work selection table involves deciding what values you want
to expose to your operators. For example, the work selection operand that is seen
and entered by the operators is TRKGRP, which indicates that work is selected
based on the number of track groups (spool space) that has been allocated to a
job.

The following is a description of the $WSTAB operands used to create the table
illustrated in Figure 12 on page 355.

Operand Description

NAME The name of the individual work selection criterion.

MINLEN The minimum length of the NAME operand.

ALIAS=TG The accepted abbreviation for track groups is TG. To
prevent confusion, specify an alias of TRKGRP that
may make more sense to your operators.

FLD=JQETGNUM The field contains the number of track groups
allocated to the job. This field determines whether
there is a match with the device field. Therefore, the
FLD operand is set to JQETGNUM. Thus, the job’s
number of track groups obtained from field
JQETGNUM determines whether the offload SYSOUT
transmitter “device” should select this job for
transmitting.

The field FLD=JQETGNUM is located in the control
block JQE. The JQE (job queue element) is a control
block that represents the job while it is in the system.

So, the job’s field JQETGNUM is compared against a
threshold value set for the offload SYSOUT
transmitter “device”.

DEVFLD=DCTUSER0 The threshold value for the transmitter device is in the
field DCTUSER0. The DCTUSER0 field is set by the
operator as the threshold value.

DEVCB=DCT The device control block is DEVCB=DCT. The device
field DCTUSER0 is located in the control block DCT
(device control table). DCTs define devices to JES2.
Thus, every device in JES2 has a DCT; this includes
offload SYSOUT transmitters.

MYWSTAB $WSTAB TABLE=(DYNAMIC,MCTSTWTP)
$WSTAB NAME=TRKGRP, X

MINLEN=2, X
ALIAS=TG, X
FLD=JQETGNUM, X
CB=JQE, X
DEVFLD=DCTUSER0, X
DEVCB=DCT, X
RTN=WSTRKGRP

$WSTAB TABLE=END

Figure 13. Example of a Dynamic WS Table

356 z/OS V1R4.0 JES2 Macros

Operand Description

RTN=WSTRKGRP discussed earlier, a work selection routine has to gain
control to verify that the amount of spool space
allocated to a job (JQETGNUM) is greater than the
threshold specified by the user for the device
(DCTUSER0). This is because while the job is in
conversion or execution, JQETGNUM holds an offset
into the checkpoint area which contains the number of
track groups allocated to the job. The routine is
WSTRKGRP. This routine must be link-edited with this
table entry so that the routine’s address can be
resolved.

Coding the Other Pieces
In addition to coding the installation work selection table, you need to

v Define the installation work selection routine (WSTRKGRP)

v Code Exit 0. Exit 0 code must:

– Obtain the $UCT and place the $UCT’s address in the $HCT

– Initialize the $UCT

– Place the installation Work Selection table address in the MCTSTWTU field in
the $MCT in module HASPTABS. This is not necessary for dynamic tables.
Dynamic tables should be linked to the table pair by placing a LOAD
initialiation statement in your JES2 initialization stream for the module
containing the dynamic WS table.

Trace Identifiers (TID) Tables
Trace identifiers tables are used to add installation trace identifiers to a JES2
system or to override JES2 trace identifiers in JES2.

TID Control Blocks and Macros
The $MCT table pair MCTTIDTP points to JES2, installation, and dynamic DTE
tables. The $MCT field MCTTIDTH points to the JES2 TID table. The JES2 TID
table name is HASPTIDT. The $MCT field MCTTIDTU contains the address of the
installation table, if such a table exists.

The $TIDTAB macro builds both the JES2 and installation tables and table
elements. This macro also contains the mapping macro for the TID table and
element.

The $TRACE facility uses the TID tables to determine what identifiers are valid and
what formatter routines receive control.

The $TRACE executable macro allocates a JES2 trace table entry in an active
trace table and returns its address. Optionally, $TRACE initializes the trace table
entry (TTE) based upon parameters passed. The JES2 event trace facility is called
to perform the TTE allocation.

$TRACE can be specified anywhere in the JES2 system (including the HASCnnnn
user environment load modules) except in routines running as disabled interrupt
exits (for example, an IOS appendage). Register 13 must point to a usable OS-style
save area. You must also code the $TRP macro on the $MODULE statement to
provide the required mapping.

Appendix A. Using JES2 Table Pairs 357

The $GETABLE macro provides access to the TID tables. The $GETABLE macro
invokes the $GETABLE service routine to obtain a table element from the JES2 or
installation table. To obtain a TID table, code the TABLE=TID operand. This macro
returns the table element of the specified ID, or, if LOOP is specified, it returns the
next table element after the specified ID.

The $TLGWORK macro maps the event trace log processor variable extension
area. This macro contains fields that are specific for the processor and needed by
the installation format routines.

To use the trace interface, it is necessary to understand the structures of the
primary control blocks. These control blocks include the trace table prefix (TTP) and
the trace table entry (TTE). The TTP describes the entire trace table while the TTE
describes elements within the trace table.

Figure 14 shows two trace tables containing trace table prefixes. The TTP has three
pointers. The first pointer points to the previous trace table, the second pointer
points to the end of the table, and the final pointer points to the next available spot
in the trace table.

Trace tables are made up of as many TTEs as can fit in the trace table. The TTEs
are not a fixed size, but are the size as specified on the $TRACE macro call. The
top of the TTE contains the fields mapped by the $TTE macro that describe the
data contained in the TTE.

A JES2 TID Table
Figure 15 on page 359 illustrates the JES2 TID table. The table name is HASPTIDT;
the same as that specified in the V-type address constant in the $MCT. The table is
delimited by TABLE=HASP (to start of the table) and TABLE=END (to end of the
table). The table element shown represents all the information that JES2 needs to
define JES2 trace identifier 1 for the tracing of $SAVEs. This is the table element
that is passed to the $TRACE facility.

When $TIDTAB is specified with operands other than TABLE=, the macro generates
a table element. In Figure 15 on page 359, the table element that is generated is for
trace identifier 1. All JES2 trace identifiers are defined within this single table.

┌───────────────────────┐ ┌────────────────────────┐
│ │ │ │
│ TRACE TABLE PREFIX │Í────────│ TRACE TABLE PREFIX │
│ │ ┌──│ │
│ (TTP) │ ┌──│──│ (TTP) │
│ │ │ │ │ │
├───────────────────────┤ │ │ ├────────────────────────┤
│ TTE │ │ │ │ TTE │
├───────────────────────┤ │ └─Ê├────────────────────────┤
│ TTE │ │ │ │
├───────────────────────┤ │ ├────────────────────────┤
│ . │ │ │ │
│ . │ │ │ │
├───────────────────────┤ │ ├────────────────────────┤
│ TTE │ │ │ │
└───────────────────────┘ └────Ê└────────────────────────┘

Figure 14. Trace Table Structure

358 z/OS V1R4.0 JES2 Macros

An Installation TID Table
Figure 16 illustrates an installation trace table

A Dynamic TID Table
Figure 17 illustrates an alternative method of defining a trace table from Figure 16
through use of a dynamic table.

To create the installation TID table illustrated in Figure 16 or Figure 17, you need to
code the following on the $TIDTAB macro.

Operand Description

ID=255 The installation identifier. Installation identifiers should
start at 255 and decrease,

FORMAT=TROUT255 The name of the format routine is TROUT255, for
TRace OUTput for identifier 255.

NAME=SAFCALL The name that is associated with the trace entry
should be SAFCALL, because the function of this
trace identifier is to trace a SAF call.

Coding the Other Pieces
In addition to coding the installation TID table, you need to do the following:

v Code Exit 0. Exit 0 must:

– Obtain the $UCT and place the $UCTs address in the $HCT.

– Initialize the $UCT.

HASPTIDT $TIDTAB TABLE=HASP
$TIDTAB ID=...
$TIDTAB ID=001, X

FORMAT=TROUT001, X
NAME=$SAVE

$TIDTAB ID=...
$TIDTAB TABLE=END

Figure 15. The JES2 TID Table

USERTIDT $TIDTAB TABLE=USER
$TIDTAB ID=255, X

FORMAT=TROUT255, X
NAME=SAFCALL

$TIDTAB TABLE=END

Figure 16. Example of an Installation TID Table

MYTIDTAB $TIDTAB TABLE=DYNAMIC
$TIDTAB ID=255, X

FORMAT=TROUT255, X
NAME=SAFCALL

$TIDTAB TABLE=END

Figure 17. Example of a Dynamic TID Table

Appendix A. Using JES2 Table Pairs 359

– Place the installation TID table address in the MCTTIDTU field in the $MCT in
module HASPTABS. This is not necessary for dynamic tables. Dynamic tables
should be linked to the table pair by placing a LOAD initialization statement in
your JES2 initialization stream for the module containing the dynamic trace id
table.

v Provide the format routine. The installation format routine cannot itself issue a
TRACE=YES on its $SAVE or $RETURN. The registers upon entry to the format
routine are as follows:

– Register 1 - points to the TTP for the trace table that contains the entry as
defined by the installation TIDTAB.

– Register 2 - points to the TTE that contains the data that the installation
$TRACE macro saved. This is the data to be formatted by the TROUT255
format routine.

– Register 4 - points to the TIDTAB (Trace Id Table) element that you created.

– Register 5 - points to an open area in an output area. The format routine
takes the data contained in the TTE, makes the data printable, and places the
resulting printable data into this output area, starting at the location pointed to
by R5. The field TLGBSAVE in the $TLGWORK area (the variable extension
area off of the event trace log PCE) points to the beginning of this output
area. The maximum size of this output is defined by an equate in $HASPEQU
named TRCLRECL. Therefore, the maximum area that can be saved in this
output area is TRCLRECL-1 (minus one for the carriage control). When the
output area is full, a call to a routine named TRCPUT can be made to ‘PUT’
this line and obtain a new output area.

– Register 14 - contains the return address.

– Register 15 - contains the format routine entry address.

The TRCPUT service routine is an external routine available to installation format
routines to “PUT” a formatted output area and obtain a new output area. You can
access the TRCPUT service through a $CALL TRCPUT call out of the HCT in
the PADDR.

On entry to the TRCPUT service routine, you must pass the length of the text in
Register 0. You can calculate this by taking the ending address in the output area
of the installation data and subtracting the value in TLGBSAVE. Register 15 must
contain the address of the TRCPUT service routine and Register 14 must contain
the return address (that is, use standard BALR R14,R15 linkage).

On exit, the TRCPUT service routine is returned in register 5 the address of the
new output area. The format routine must return to the caller of the installation
format routine. Therefore, the format routine must $STORE R5 upon return from
the TRCPUT service routine.

Creating a Trace Table Using the $TRACE Macro
The following example provides an example and explanation of how to create an
installation-defined trace record.

To generate a $TRACE macro to record register information when its identifier is
activated (assuming a $TIDTAB entry has been defined for the identifier and that
the identifier is 255), a trace entry point would appear as follows:

STM R0,R15,$REGSAVE
label $TRACE ID=255,LEN=16*4,DATA=$REGSAVE,NAME=$USER

360 z/OS V1R4.0 JES2 Macros

The STM instruction stores registers 0-15 in storage at location $REGSAVE. This
location is passed to the $TRACE macro in the DATA= parameter.

The ID= parameter specifies the event trace identifier (255) associated with this
trace point (and previously defined in the $TIDTAB table).

The LEN= parameter specifies the length of the data to be logged. In this case, 4
bytes for each of the 16 registers.

The DATA= parameter points to the location of the data to be logged. In this case,
the register’s data was stored by a STM instruction into the $REGSAVE area.

The NAME= parameter specifies the name associated with this macro call. This
name ($USER) can be extracted from the trace table entry and formatted as part of
the output for trace ID 255 (by including a formatting routine for ID 255 in the JES2
event trace log processor—HASPEVTL). When specified, this name is used instead
of the label on the $TRACE macro.

The SUBTASK= parameter (which is only valid in the JES2 environment) specifies
whether the $TRACE is issued from the JES2 main task or a subtask environment.
This parameter defaults to the environment for which the assembly is defined (as
provided on the ENVIRON= keyword of the $MODULE macro for this module).

Block Extension Reuse Table (BERT) Tables
The BERT tables ($BERTTABs) can add extensions to existing JES2 checkpointed
control blocks such as job queue elements (JQEs), or can create new
installation-defined checkpointed control blocks.

BERT Control Blocks and MACROS
The MCT table pair MCTBRTTP points to JES2, installation, and dynamic BERT
tables. The $MCT field MCTBRTTH points to the JES2 BERT table. The $MCT field
MCTBRTTU points to the installation table, if such a table exists.

The $BERTTAB macro builds both the JES2 and installation tables and table
elements. This macro also contains the mapping macro for the BERT table and
element.

The $DOGBERT executable macro is used to locate the data define by the
$BERTTABs in the BERTs and collect that data into a control block. For control
block types defined by JES2 (such as JQE and CAT), higher level services
($DOGJQE and $DOGCAT) should be used instead of $DOGBERT to manage this
data.

The $DOGBERT executable macro can also be coded with the
ACTION=GETOFFSET operand to obtain the offset and length of the data defined
by a particular $BERTTAB.

A JES2 BERT Table
Figure 18 on page 362 illustrates a JES2 BERT table. The table name is
HASPBRTT, the same as that specified in the V-type address in the $MCT. The
table is delimited by TABLE=HASP (to start the table) and TABLE=END (to end the
table). The table element shown represents all the information JES2 needs to
define an extension to the JQE containing accounting information from the JOB
card for the job.

Appendix A. Using JES2 Table Pairs 361

When $BERTTAB is specified with operands other than TABLE=, the macro
generates a table element. In Figure 19, the table element is generated for JQE
accounting information. All JES2-defined BERTs are defined within this single table.

An Installation BERT Table
Figure 19 illustrates an installation BERT table.

A Dynamic BERT Table
Figure 20 illustrates an alternative method of defining the BERT table from
Figure 19 through use of a dynamic table.

To create the installation BERT table coded illustrated in Figure 19 or Figure 20, you
need to code the following on the $BERTTAB macro:

HASPBRTT $BERTTAB TABLE=HASP
$BERTTAB ...
$BERTTAB CBTYPE=JQE,NAME=ACCT,CBOFF=JQAACCT-JQE, X

LEN=L’JQAACCT
$BERTTAB ...
$BERTTAB TABLE=END

Figure 18. The JES2 BERT Table

USERBRTT $BERTTAB TABLE=USER
$BERTTAB CBTYPE=JQE,NAME=UNOTIFY,CBOFF=*, X

LEN=8
$BERTTAB TABLE=END

Figure 19. Example of an Installation BERT Table

MYBRTTB $BERTTAB TABLE=DYNAMIC.
$BERTTAB CBTYPE=JQE,NAME=UNOTIFY,CBOFF=*, X

LEN=8
$BERTTAB TABLE=END

Figure 20. Example of a Dynamic BERT Table

362 z/OS V1R4.0 JES2 Macros

Operand Description

CBTYPE=JQE The control block type with which the data is to be
associated. In this case the data is to be associated
with a JQE. You can also associate your own data
with a Class Attribute Table (CAT), WLM Servic Class
Queue head (WSCQ), or your own installation control
block type. By convention, the JES2 table will not use
CBTYPE= values beginning with the letters U or V.
Installation CBTYPE= values should therefore begin
with one of these two letters to avoid potential conflict
with future JES2 types.

NAME=UNOTIFY A unique name which identifies the specific date
within the control block type. By convention, the JES2
table will not use NAME= values beginning with the
letters U or V. Installation NAME= values should
therefore begin with one of these two letters to avoid
potential conflict with future JES2 types.

CBOFF=* The offset within the control block of the data defined
by this table. CBOFF=* indicates that the offset is to
be determined at run time. The $DOGBERT
ACTION=GETOFFSET macro should be coded (with
CBTYPE= and NAME= equal to the specification on
the $BERTTAB) to locate the data in the control block.

LEN=8 The length of the data area defined by the
$BERTTAB.

Coding the Other Pieces
In addition to coding the installation BERT table, you need to do the following:

v Code Exit 0. Exit 0 code must:

– Obtain the $UCT and place the $UCT’s address in the $HCT.

– Initialize the $UCT.

– Place the installation work selection table address in the MCTBRTTU field in
the $MCT in module HASPTABS. This is not necessary for dynamic tables.
Dynamic tables should be linked to the table pair by placing a LOAD
initialization statement in your JES2 initialization stream for the module
containing the dynamic BERT table.

v Provide routines (such as installation exits) that fill in or use the BERT data.
These routines should access the data as follows:

– For extensions to the JQE (CBTYPE=JQE):

- Access the JQA using the $DOGJQE macro.

- Determine the offset of the data within the JQA using the $DOGBERT
ACTION=GETOFFSET service. The address of the data can then be
computed by adding this offset to the JQA address.

– For extensions to the CAT (CBTYPE=CAT):

- Access the CAT using the $DOGCAT macro.

- Determine the offset of the data within the CAT using the $DOGBERT
ACTION=GETOFFSET service. The address of the data can then be
computed by adding this offset to the CAT address.

– For installation-defined CBTYPE values:

- Obtain storage to contain the control block and a PREBERT. The
PREBERT must precede the control block in this storage. The length of the

Appendix A. Using JES2 Table Pairs 363

control block (without the PREBERT) can be obtained using the
$DOGBERT ACTION=GETLENGTH macro.

- Access the data using the $DOGBERT macro. Use ACTION=FETCH to
read the BERT data from the checkpoint and ACTION=RETURN to return it
to the checkpoint.

JES2 $SCAN Facility
JES2 provides a service facility for scanning parameter statement input (initialization
statement and operator commands) called $SCAN. It is a general facility that
defines a general grammar for the input statements to be processed, allows for
definition of the allowed input via tables, and provides for special processing via exit
routines called during the scan.

$SCAN is basically designed to perform most of the scanning required for
processing the JES2 initialization statements, with the remaining processing for
those statements being done by the exits from $SCAN, and to allow the use of
multiple tables to define the allowed parameter input. $SCAN can scan various
input structures, including those that require recursive calls to $SCAN itself. At each
level of recursion, $SCAN can use two tables of specifications that define the
allowed input at that level.

JES2 has implemented the scanning of its initialization options and its initialization
statements using $SCAN and a series of these table pairs . A JES2-defined table
has been built as the second table of each pair, and an installation table can be
defined as the first table to add to or modify the specifications in the JES2 table.
$SCAN can be useful, as well, in implementing other types of statements within
routines called from the $EXIT facility, such as installation-defined operator
commands or JES2 job control statements.

Six macros are provided to aid your use of the $SCAN facility. They are $SCAN,
$SCANB, $SCANCOM, $SCAND, $SCANDIA, and $SCANTAB. It is important that
you understand the interrelationships of these macros before attempting to
implement any use of the $SCAN facility.

$SCAN-Related Control Blocks
There are several control blocks related to $SCAN. First, the facility recognizes a
set of “primitive” control blocks specified in the scan table entries. They are the
HCT, the current PCE, DCTs, and the user control table (UCT). The UCT is not
generated or specifically used by JES2, but rather is an optional user control block
pointed to by the $UCT field of the HCT. Installations requiring a central control
block for use in exit routines or user modifications should generate a UCT and use
it as their central main task control block rather than adding new fields to the HCT.

Additionally, scan table entries can indicate the control block from the previous
“level” of scanning or a temporary control block should be used. A subsequent
search for the actual required control block via control block chains and subscript
indexing can also be indicated by the table entries.

Another important control block for the JES2 uses of $SCAN is the JES2 master
control table (MCT). The MCT is pointed to by field $MCT in the HCT and it
contains the addresses of many JES2 statically-defined tables and related routines.
Importantly, the MCT contains the doublewords containing addresses of the scan
table pairs. The MCT is assembled into module HASPTABS in load module
HASJES20.

364 z/OS V1R4.0 JES2 Macros

The scan table entries themselves form control blocks which are mapped by the
$SCANTAB macro. Also, during a scan, a work area is used by $SCAN and passed
to pre-scan and post-scan exit routines. The scan work areas are allocated via
$GETWORK and mapped by the $SCANWA macro.

Implementing $SCAN Tables
The $SCANTAB macro should be used to generate a scan table. Your installation
can define, for example, a table that describes the keywords and input allowed on a
JES2 job control statement and use $SCAN and that table from a JES2 HASPRDR
Exit 4 to implement your own JES2 job control statements.

As mentioned, the JES2 initialization options, initialization parameter statements,
and some operator commands are now implemented using $SCAN. (Refer to z/OS
JES2 Commands for a list of these commands.) Scan tables in the HASPSTAB
module make up the JES2 half of the table pairs that define those options and
parameters. Your installation can define its own scan tables to add to or replace any
or all of the JES2 scan table entries.

Each of the pairs of table addresses used in the implementation of the initialization
statements is defined in the MCT in HASPTABS. Your can include your table by
using one of the following techniques:

v Specify $SCANTAB TABLE=(DYNAMIC,pair-offset). When the module containing
the tables is loaded (via the LOAD(xxxxxxxx) initialization statement), the tables
will be associated with the specified table pair. Multiple tables may be listed if
your tables are to be associated with multiple statements or commands. Valid
table pair names take the form of MCTxxxTP, where xxx is listed in Table 9.

v Your installation can locate the MCT while running in a JES2 initialization exit (for
example, Exit0) and store the addresses of its tables in the MCTxxxTU fields of
the MCT, or you can point to your installation-defined UCT that contains a pair of
table addresses.

v The linkage editor can be used to define these table addresses to JES2 by
linkediting them (and possibly the UCT) into HASJES20. This is possible
because the MCTxxxTU and $UCT fields are defined as the weak external
symbol names. The installation must name its scan tables with those specific
names (listed in Table 9) in order to use this method of providing user scan
tables for the initialization statements.

The installation tables can provide entries that define new initialization options or
statements, new parameters on JES2-defined statements, or new commands. Since
the installation table is searched first, JES2-defined entries can be functionally
replaced as well. The following scan tables are involved with the JES2 initialization
statements. In each case,the “xxx” described indicates the MCT labels for the table
address pair (MCTxxxTP), the installation table address (MCTxxxTU), and the JES2
table address (MCTxxxTH).

To access $SCAN table pairs at the highest level of scan use:

Table Name To Access
OPT Initialization Options
MPS Main Parameter Statements (initialization/command statements)
MG Message Generation

Be aware that although the main initialization parameter statement (MPS) tables are
used for JES2 initialization statements and for processing the object of several
command verbs, not all command verb processing checks the MPS $SCAN tables

Appendix A. Using JES2 Table Pairs 365

before trying to process a command with non-$SCAN code. Entries in the
installation-defined or JES2-defined MPS table are used for initialization processing
if:

v the CALLERS= keyword on the $SCANTAB macro is not specified or

v the CALLERS= keyword on the $SCANTAB macro includes the correct
initialization $SCAN caller id, as follows:

$SCAN Caller ID Equate Initialization Statement Source
$SCIRPL Parmlib or Exit 19
$SCIRPLC Operator Console

Entries in the installation-defined or JES2-defined MPS table are used for the
following command verbs if:

v the object of the verb in the command input matches the NAME= keyword on the
$SCANTAB macro (at least for the minimum length required, that is, MINLEN=)
and

v the CALLERS= keyword on the $SCANTAB macro explicitly includes the caller ID
for the command verb, as follows:

$SCAN Caller ID Equate Command Verb
$SCDCMDS $D or $DU (long form)
$SCDOCMD $DU (short form)
$SCSCMDS $T
$SCSTCMD $S
$SCPCMDS $P
$SCECMDS $E
$SCACMDS $ADD
$SCRCMDS $DEL
$SCLTCMD $DO
$SCECMDA $E (MEMBER)
$SCZCMDS $Z
$SCHCMDS $H
$SCRLCMD $A
$SCCCMDS $C
$SCTOCMD $TO
$SCCOCMD $CO
$SCPOCMD $PO
$SCOCMDS $O
$SCLOCMD Output short display
$SCLCMDS $L

If the command verbs shown in the table above are used against objects for which
no match is found in the MPS tables, then non-$SCAN command support is
attempted. Using sub-tables you can also affect the sub-operands of JES2-defined
MPS tables entries by using the tables by Table 9.

Table 9 shows the processing that can be affected by the use of $SCAN tables.

Table 9. JES2 Reserved Master Control Table Names

$SCAN Target Master
Control Table
Name

Used for MPS
Processing

Parent CB Notes

INIT $D $T

ACTRMT(nnnn) ACT u RSO

APPL(applid) APL u u u APT $ADD

366 z/OS V1R4.0 JES2 Macros

Table 9. JES2 Reserved Master Control Table Names (continued)

$SCAN Target Master
Control Table
Name

Used for MPS
Processing

Parent CB Notes

INIT $D $T

BADTRACK BAD u No commands exist

BUFDEF BUF u u u

BUFDEF BELOWBUF= BFH u u u

BUFDEF EXTBUF= BFX u u u

CKPTDEF CKT u u u CKPT recovery dialog

CKPTDEF CKPTn= KPN u u u HFAM CKPT recovery dialog

CKPTDEF
NEWCKPTn=

EKN u u u HFAM CKPT recovery dialog

CKPTDEF
VERSIONS=

VKP u u u

CKPTDEF VOLATILE= VLT u u u

CKPTLOCK CKL $E only;
normally not
driven by
$SCAN

CKPTSPACE SPC u u u

CKPTSPACE CKPT1 CK1 u

CKPTSPACE CKPT2 CK2 u

COMPACT COM u u

CONDEF CND u u u

CONNECT CON u u u NAT $ADD and $DEL

DEBUG DBG u u u

DESTDEF DST u u u

DESTID(destname) DES u u u RDT $ADD and $DEL

ESTBYTE EBY u u u EST

ESTIME ETM u u u EST

ESTLNCT ELC u u u EST

ESTPAGE EPG u u u EST

ESTPUN EPN u u u EST

EXIT(nnn) XIT u u u XIT

FSS(fssname) FSS u u u FSSCB $ADD

INCLUDE INC u

INIT(nnn) PIT u u u PIT $S, $P, and $Z

INITDEF PAR u u u

INTRDR INR u u

JOBCLASS(n) CAT u u u CAT

JOBCLASS(n)
XEQCOUNT=

JCX u u u CAT

JOB, JOBQ, STC, TSU JQE u u JQA $D, $T, $S, $P, $E, $H, $A, $C

JOB, JOBQ, STC, TSU JQE u u JQA $D, $T, $S, $P, $E, $H, $A, $C

Appendix A. Using JES2 Table Pairs 367

Table 9. JES2 Reserved Master Control Table Names (continued)

$SCAN Target Master
Control Table
Name

Used for MPS
Processing

Parent CB Notes

INIT $D $T

JOB CC= JCC u u JQA Display and filtering only

JOB SPOOL= JSP u u JQA Display and filtering only

JOB, JOBQ, STC, TSU OTP JQA $DO, $TO, $CO, $PO, $O

JOB, JOBQ, STC, TSU LOT JQA $L

JOBDEF JOB u u u

JOBPRTY(n) JPY u u u

LINEnnnn LNE u u u DCT $DU and $ADD. $S, $P, and $E are
processed by $SCAN and MPS tables
but do not use LOG subtables.

LINEnnnn.device LIN u u u $D, $T, $DU are processed by $SCAN,
other commands are not.

LINEnnnn.JTn LJT u u u DCT $D, $T, $DU are processed by $SCAN,
other commands are not.

LINEnnnn.JRn LJR u u u $D, $T, $DU
are processed
by $SCAN,
other
commands are
not.

LINEnnnn.STn LST u u u DCT $D, $T, $DU are processed by $SCAN,
other commands are not.

LINEnnnn.SRn LSR u u u DCT $D, $T, $DU are processed by $SCAN,
other commands are not.

LOADMOD(modname) LOD u u u LMT

LOGONn LOG u u u DCT $DU and $ADD. $S, $P, and $E are
processed by $SCAN and MPS tables
but do not use LOG subtables.

MASDEF MAS u u u

MEMBER(x) MEM u u u QSE

MEMBER(x)
LASTART=

STY u QSE

MODULE MOD u u MIT USER/dynamic tables not allowed

NETACCT NET u u

NJEDEF NJE u u u

NODE(nnnn) NOD u u u NIT $SN command not processed by
$SCAN

NODE(nnnn) AUTH= NAU u u u NIT

NODE(nnnn)
PASSWORD=

NDP u u u NIT

OFFn.device OFF u u u $DU. $S OFFn.device, $P
OFFn.device not processed by $SCAN

OFFn.JR OJR u u u DCT $DU. $S OFFn.JR, $P OFFn.JR not
processed by $SCAN

368 z/OS V1R4.0 JES2 Macros

Table 9. JES2 Reserved Master Control Table Names (continued)

$SCAN Target Master
Control Table
Name

Used for MPS
Processing

Parent CB Notes

INIT $D $T

OFFn.JT OJT u u u DCT $DU. $S OFFn.JT, $P OFFn.JT not
processed by $SCAN

OFFn.JT MOD= OJM u u u DCT

OFFn.SR OSR u u u DCT $DU. $S OFFn.SR, $P OFFn.SR not
processed by $SCAN

OFFn.ST OST u u u DCT $DU. $S OFFn.ST, $P OFFn.ST not
processed by $SCAN

OFFn.ST MOD= OSM u u u DCT

OFFLOADn OFL u u u DCT $DU. $S, $P, and $Z not processed by
$SCAN

OPTSDEF OPD u u u

OUTCLASS(n) SCT u u u SCAT

OUTDEF OUT u u u

OUTPRTY(n) OPY u u u

PATH(x) PTH u NIT

PATH(x) VIA VIA u NITP Individual path element

PCEDEF PCD u u

PCE PCC u u PTAB

PCE COUNT= PCN u PTAB

PCE DETAILS= PDT u PTAB

PRINTDEF PTD u u u

PRINTDEF SETPAGE= SEP u u u

PROCLIB PRL u u u $ADD, $DEL

PROCLIB DD= PDD u u u PAD $ADD, $DEL

PRTnnnn PRT u u u DCT $B, $C, $E, $F, $I, $N, $P, $S, $Z are
not processed by $SCAN

PRTnnnn FSSINFO= PRF u u u DCT $d only

PUNnn PUN u u u DCT $B, $C, $E, $F, $I, $N, $P, $S, $Z are
not processed by $SCAN

PUNCHDEF PUD u u

RDI RDI u u DCT

REDIRECT RED u u u CRE $ADD

Rnnnn.device RDV u u u $B, $C, $E, $F, $I, $N, $P, $S, and $Z
are not processed by $SCAN

Rnnnn.PRm RPR u u u DCT $B, $C, $E, $F, $I, $N, $P, $S, and $Z
are not processed by $SCAN

Rnnnn.PUm RPU u u u DCT $B, $C, $E, $F, $I, $N, $P, $S, and $Z
are not processed by $SCAN

Appendix A. Using JES2 Table Pairs 369

Table 9. JES2 Reserved Master Control Table Names (continued)

$SCAN Target Master
Control Table
Name

Used for MPS
Processing

Parent CB Notes

INIT $D $T

Rnnnn.RDm RRD u u u $B, $C, $E, $F,
$I, $N, $P, $S,
and $Z are not
processed by
$SCAN

Rnnnn.CON RCN u DCT

RDRnn RDR u u u DCT $C, $P, $S, $Z are not processed by
$SCAN

RDRnn AUTH= RAU u u u DCT Also RDI AUTH= and Rn.RDn AUTH=

RECVOPTS(type) RCV u u u RVS

REQJOBID RQJ u u u

RMT(nnnn) RMT u u u RAT $DU. $S, $P commands are processed
by $SCAN and MPS tables but do not
use the RMT subtables

SMFDEF SMF u u u

SPOOL SPL u DAS $D, $S, $P, $Z

SPOOL UNITDATA= VUN u DAS

SPOOLDEF SPD u u u

SPOOLDEF FENCE= FEN u u u

SPOOLDEF
TGSPACE=

TGS u u u

SSI(nnn) SSI u u u

SUBNET(xxxxx) SUB u NSACT

SUBTDEF SBD u u u

TPDEF TPD u u u

TPDEF BSCBUF= BSC u u u

TPDEF SNABUF= SNA u u u

TPDEF SESSIONS= SES u

TRACE(nnn) TRI u u $S, $P commands are processed by
$SCAN

TRACEDEF TRC u u u

TRACEDEF LOG= TLG u u u

TRACEDEF STATS= STA u

ZAPJOB ZBJ= INIT u ZAPJOB command and init stmt

Examples of $SCAN Tables
The three examples in Figure 21 on page 371 show:

(A) how to add a new simple initialization statement

(B) how to replace a parameter statement specification on the PRT(nnnn)
statement

370 z/OS V1R4.0 JES2 Macros

(C) how to define a new initialization statement to provide an
installation-specific function with a single parameter.

All the specifications that can be made in scan table entries are described with the
$SCANTAB macro.

Reviewing the JES2 tables in HASPSTAB that define the initialization statements
will illustrate to you, most of the capabilities of the $SCANTAB specifications and
the $SCAN facility.

You can specify the addresses of these tables to JES2 by including the tables in an
assembly module linkedited into HASJES20 or by having an Exit 0 or Exit 19
routine locate the tables and save their addresses in the MCT.

(A)

* *
* USER TABLE FOR MAIN INITIALIZATION STATEMENTS *
* *
* ’USERCAN’ - USER DEFINED STATEMENT THAT SHOULD EFFECT THE *
* SAME ACTION AS JES2 ’CANCEL’ *
* *

SPACE 1 MYTAB1 $SCANTAB TABLE=DYNAMIC,MCTMPSTP)
$SCANTAB NAME=USERCAN,FIELD=CIRFLAG1,CB=PCE,CONV=FLAG, C

VALUE=(,CIRF1CAN,FF),CALLERS=$SCIRPLC
$SCANTAB TABLE=END

Figure 21. Three Examples of $SCANTAB Tables (Part 1 of 3)

(B)

* *
* USER TABLE FOR PRINTER INITIALIZATION STATEMENTS *
* *
* ’FORMS’ - USER DEFINED REPLACEMENT KEYWORD FOR THE *
* JES2 FORMS PARAMETER - ALLOWS THE INPUT TO *
* BE ONLY 3-5 CHARACTERS LONG RATHER THAN 1-8. *
* *
* ’USERCLS’ - USER DEFINED STATEMENT THAT SHOULD EFFECT THE *
* SAME ACTION AS JES2 ’CLASS’, EXCEPT ONLY *
* FOR CLASSES A-Z. *
* *

SPACE 1 MYPRTTAB $SCANTAB TABLE=(DYNAMIC,MCTPRTTP)
$SCANTAB NAME=FORMS,CB=PARENT,DSECT=DCTDSECT,MINLEN=1, C

FIELD=DCTFORMS,CONV=CHARAN,RANGE=(3,5)
$SCANTAB NAME=USERCLS,CB=PARENT,DSECT=DCTDSECT,CONV=CHARA, C

FIELD=(DCTCLASS,PITCLLEN),RANGE=(1,PITCLLEN-1)
$SCANTAB TABLE=END

Figure 21. Three Examples of $SCANTAB Tables (Part 2 of 3)

Appendix A. Using JES2 Table Pairs 371

The above examples are only examples of defining and modifying initialization
statements by use of the $SCAN facility. The source module must, of course,
include all standard JES2 statements, such as: $MODULE and $MODEND.

(C)

* *
* USER TABLE TO DEFINE A NEW INITIALIZATION STATEMENT *
* TO DEFINE THE MAXIMUM NUMBER OF VALID USERS *
* *
* ’USERDEF’ - USER DEFINED STATEMENT TO SPECIFY THE *
* NUMBER OF USERS *
* *
* NUM - PARAMETER ON THE ’USERDEF’ *
* STATEMENT TO DEFINE THE MAXIMUM *
* NUMBER OF DEFINED USERS *
* *

SPACE 1 UDEFTAB $SCANTAB TABLE=(DYNAMIC,MCTMPSTP)
$SCANTAB NAME=USERDEF,CB=UCT,CONV=SUBSCAN, C

SCANTAB=(UCTSCANT,UCT),
TABLE=END

USUBSCAN $SCANTAB TABLE=USER
$SCANTAB NAME=NUM,CB=UCT,MINLEN=3,DSECT=UCT,FIELD=$UCTNUM, C

CONV=NUM,RANGE=(0,9)
$SCANTAB TABLE=END
SPACE 1
UCT
.
.
. USERCB EQU

UCTSCNTP $PAIR FORM=TABLE,TABLE=SCAN,
HASPENT=NONE,USERENT=USUBSCAN

$UCTNUM DS F
.
.
.

Figure 21. Three Examples of $SCANTAB Tables (Part 3 of 3)

372 z/OS V1R4.0 JES2 Macros

Appendix B. Table Pairs Coding Example

This coding example implements an installation security processor. It is made up of
a JES2 initialization Exit 0 and a user extension module named HASPXJ00 which
contains the installation security processor, the installation security subtask, and the
installation PCE, DTE, trace, work selection, and $SCAN tables. The example
includes sample mapping macros $SCYWORK, $SCDWORK, and $UCT, and the
macro $USERCB which invokes the mapping macros.

Note: This code is provided as an example of installation extensions to JES2. The
code is not Type 1 supported code of IBM. It is not APARable.

The examples are inter-related to show how the tables can be used together. This
is not required. That is, it is not necessary to code a PCE table (create your own
processor) and code a DTE table (create your own subtask). In fact, it may make
no sense for certain applications to design interrelated tables. This example was
contrived to show what can be done, not necessarily what should be done.

There are six pieces required for the example used here.

v HASPXJ00 - Installation extension code and tables that are required to create an
installation security processor, security subtask, trace id, work selection criteria
on the offload sysout transmitter work selection list, and an additional operand on
the offload sysout transmitter.

v $UCT - contains required fields for table generation

v $SCDWORK - subtask DTE extension to hold fields specific to a security subtask

v $SCYWORK - processor PCE extension to hold fields specific to a security
processor

v $USERCBS - control block that actually generates the above macros. This
control block is known by $MODULE and is the way to get $MODULE to
generate installation control blocks.

v HASPXIT0 - Exit 0 module that contains EXIT0. This exit initializes the $MCT
with the addresses of the installation tables located in HASPXJ00.

$USERCBS - Generates User Control Blocks
MACRO -- $USERCBS - USER CONTROL BLOCK DSECT
$USERCBS

**
* *
* $USERCBS - USER CONTROL BLOCK DSECT *
* *
* FUNCTION: *
* *
* THIS DSECT IS KNOWN BY $MODULE AND WILL BE USED TO GET ALL *
* INSTALLATION CONTROL BLOCKS EXPANDED WITHOUT HAVE TO *
* MODIFY THE $MODULE MACRO. *
* *
* USED BY: *
* *
* ALL INSTALLATION MODULES TO GENERATE ALL INSTALLATION *
* DEFINED CONTROL BLOCKS. FOR DETAILS ON THE FOLLOWING *
* DATA, SEE THE INDIVIDUAL CONTROL BLOCK DSECTS. *
* *
* CREATED BY: N/A FREED BY: N/A *
* *
* SUBPOOL: N/A KEY: N/A *
* *

© Copyright IBM Corp. 1988, 2002 373

* SIZE: N/A COMPONENT ID: CODE EXAMPLE *
* *
* POINTED TO BY: N/A *
* *
* FREQUENCY: N/A *
* *
* RESIDENCY: N/A *
* *
* SERIALIZATION: N/A *
* *
* CHANGE ACTIVITY, GUIDE 65 - CHICAGO, ILL - 7/86 *
* *
**

GBLC &TITLEID;
LCLC &TITL;

USERCBS DSECT USER CONTROL BLOCK DSECT
&TITL SETC ’&TITLEID -- $UCT - USER CONTROL TABLE’

TITLE ’&TITL’
$UCT , GEN THE UCT

&TITL SETC ’&TITLEID -- $SCDWORK - SECURITY SUBTASK WORK DSECT’
TITLE ’&TITL’

$SCDWORK , GEN THE SECURITY SUBTASK WORK DSECT
&TITL SETC ’&TITLEID -- $SCYWORK-SECURITY PCE WORK DSECT’

TITLE ’&TITL’
&SCYWORK; , GEN THE SECURITY PCE WORK DSECT
MEND

$SCYWORK - Processor Work Area
MACRO -- $SCYWORK -- USER SECURITY PROCESSOR WORK AREA DSECT
$SCYWORK

* *
* $SCYWORK - USER SECURITY PROCESSOR WORK AREA DSECT *
* *
* FUNCTION: *
* *
* HOLD FIELDS UNIQUE TO THE SECURITY PROCESSOR PCE *
* *
* USED BY: *
* *
* ALL SECURITY PROCESSOR PCE(S) *
* *
* CREATED BY: PCEDYN FREED BY: PCEDYN *
* *
* SUBPOOL: 1 KEY: 1 *
* *
* SIZE: SEE SCYLEN EQUATE COMPONENT ID: CODE EXAMPLE *
* *
* POINTED TO BY: UCTSYPCE FIELD OF THE $UCT DATA AREA @MES *
* *
* FREQUENCY: ONE PER SECURITY PCE *
* *
* RESIDENCY: VIRTUAL - ABOVE *
* REAL - ANYWHERE *
* *
* SERIALIZATION: JES2 MAIN TASK SERIALIZATION *
* *
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 *
* 1/88 - FIXED COMMENT *
* *

PCE DSECT USER SECURITY PROCESSOR WORK AREA

ORG PCEWORK PCE WORK AREA
SPACE 1

* *

374 z/OS V1R4.0 JES2 Macros

* FIELDS UNIQUE TO THE SECURITY PCE *
* *

SCYDTEAD DS A ADDR OF THE SECURITY DTE
SCYTQE DS XL(TQELENG) HASP TIME QUEU ELEMENT
* FIELD GOES HERE
* FIELD GOES HERE
* FIELD GOES HERE
SCYLEN EQU *-PCEWORK LENGTH OF SCY

MEND

$SCDWORK - Subtask Work Area
MACRO -- $SCDWORK -- USER SECURITY SUBTASK WORK AREA DSECT
$SCDWORK

**
* *
* $SCDWORK - USER SECURITY SUBTASK WORK AREA DSECT *
* *
* FUNCTION: *
* *
* HOLD FIELDS UNIQUE TO THE SECURITY SUBTASK *
* *
* USED BY: *
* *
* ALL SECURITY SUBTASKS *
* *
* CREATED BY: DTEDYN FREED BY: DTEDYN *
* *
* SUBPOOL: 1 KEY: 1 *
* *
* SIZE: SEE SCDLEN EQUATE COMPONENT ID: CODE EXAMPLE*
* *
* POINTED TO BY: UCTSYDTE FIELD OF THE $UCT DATA AREA @MES*
* *
* FREQUENCY: ONE PER SECURITY SUBTASK *
* *
* RESIDENCY: VIRTUAL - BELOW *
* REAL - BELOW *
* *
* SERIALIZATION: SUBTASKS FOLLOW MVS SERIALIZATION CONCERNS *
* *
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 *
* 1/88 - ADD SCDHCT *
* *
**
DTE DSECT USER SECURITY SUBTASK WORK AREA

ORG DTEWORK DTE WORK AREA
SPACE 1

**
* *
* FIELDS UNIQUE TO THE SECURITY SUBTASK *
* *
**
SCDHCT DS A(*-*) ADDRESS OF HCT @SA
* FIELD GOES HERE
* FIELD GOES HERE
SCDLEN EQU *-DTEWORK LENGTH OF SCD

MEND

$UCT - User Communication Table
MACRO -- $UCT -- USER COMMUNICATION TABLE DSECT
$UCT

**
* *

Appendix B. Table Pairs Coding Example 375

* $UCT - USER COMMUNICATION TABLE DSECT *
* *
* FUNCTION: *
* *
* HOLD FIELDS VARIABLES COMMON FOR INSTALLATION CODE *
* *
* USED BY: *
* *
* ALL INSTALLATION PROCESSOR/FUNCTIONS CAN MAKE USE OF *
* THE $UCT *
* *
* CREATED BY: HASPXITO FREED BY: JES2 TASK TERMINATION *
* *
* SUBPOOL: 0 KEY: 1 *
* *
* SIZE: SEE UCTLEN COMPONENT ID: CODE EXAMPLE *
* *
* POINTED TO BY: $UCT FIELD OF THE $HCT DATA AREA *
* *
* FREQUENCY: ONE PER JES2 SYSTEM *
* *
* RESIDENCY: VIRTUAL - ABOVE *
* REAL - ANYWHERE *
* *
* SERIALIZATION: JES2 MAIN TASK SERIALIZATION *
* *
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 *
* *
**
UCT DSECT USER COMMUNICATION TABLE DSECT
UCTID DS CL4’UCT’ UCT IDENTIFIER
UCTSCDE DS A(*-*) ADDRESS OF INSTALLATION LOAD MODULE

SPACE 1
**
* *
* FIELDS REQUIRED FOR THE PCE TABLES *
* *
**

SPACE 1
UCTMSCTY DS A(*-*) ADDR OF ENTRY POINT
UCTSYPCE DS A(*-*) SECURITY PROCESSORS
UCTSYNUM DS H’1’,H’0’
UCTSYQUE DS A(*-*) ADDR OF ELEMENT TO BE VERIFIED
UPCESCTY EQU 255 ID OF SECURITY PCE
$DRSCTY EQU 63 DISPATCHER SECURITY RESOURCE

SPACE 1

**
* *
* FIELDS REQUIRED FOR THE DTE TABLES *
* *
**

SPACE 1
UCTMDSCY DS A(*-*) ADDR OF ENTRY POINT
UCTSYDTE DS A(*-*) ADDR OF SECURITY DTE
UDTESCTY EQU 255 ID OF SECURITY DTE

SPACE 1
**
* *
* END OF UCT *
* *
**

SPACE 1
UCTLEN EQU *-UCT LENGTH OF UCT

MEND

376 z/OS V1R4.0 JES2 Macros

EXIT 0 - Initialization
XITO TITLE ’USER EXIT 0 MODULE -- PROLOG (MODULE COMMENT BLOCK)’

* *
* MODULE NAME = HASPXITO CSECT *
* *
* DESCRIPTIVE NAME = HASP EXIT 0 INITIALIZATION MODULE *
* *
* STATUS = OS/VS2 - SEE $MODULE EXPANSION BELOW FOR FMID, VERSION *
* *
* FUNCTION = THE HASPXITO MODULE INITIALIZES THE INSTALLATION $UCT *
* AND OTHER INSTALLATION DEFINED ADDRESSES AND FIELDS. *
* *
* NOTES = SEE BELOW *
* *
* DEPENDENCIES = 1) JES2 EXIT EFFECTOR *
* 2) JES2 PROCESSOR AND SUBTASK DISPATCHING *
* *
* RESTRICTIONS = THIS CODE IS PROVIDED AS AN EXAMPLE OF *
* INSTALLATION EXTENSIONS TO JES2. THIS CODE IS *
* NOT TO BE CONSIDERED TYPE 1 SUPPORTED CODE OF *
* IBM. *
* *
* REGISTER CONVENTIONS = R0-R3 = WORK REGISTER *
* R4 = ADDRESS OF THE MTE ENTRY *
* R5 = ADDRESS OF THE MCT *
* R6-R9 = WORK REGISTER *
* R10 = ADDRESS OF THE UCT *
* R11 = ADDRESS OF THE HCT *
* R12 = LOCAL ADDRESSABILITY *
* R13 = ADDRESS OF THE HASPINIT PCE *
* R14-R15 = WORK AND LINKAGE REGISTER *
* *
* PATCH LABEL = NONE *
* *
* MODULE TYPE = CSECT *
* *
* PROCESSOR = OS/VS ASSEMBLER H OR ASSEMBLER XF (370) *
* *
* MODULE SIZE = SEE $MODEND MACRO EXPANSION AT END OF ASSEMBLY *
* *
* ATTRIBUTES = NOT REUSABLE, NON-REENTRANT, SUPERVISOR STATE, *
* PROTECT KEY OF HASP’S (1) OR 0, RMODE 24, *
* AMODE 24/31 *
* *
* ENTRY POINT = EXIT0 *
* *
* PURPOSE = SEE FUNCTION *
* *
* LINKAGE = STANDARD JES2 $SAVE/$RETURN LINKAGE *
* *

* INPUT RO = A CODE INDICATING WHERE THE INITIALIZATION OPTIONS *
* WERE SPECIFIED *
* R1 = ADDRESS OF A 2-WORD PARAMETER LIST WITH THE *
* FOLLOWING STRUCTURE: *
* WORD 1 (+0): ADDR OF INITIALIZATION OPTIONS STRING *
* WORD 2 (+4): LENGTH OF INITIALIZATION OPTIONS STRING *
* R11 = ADDRESS OF HCT *
* R13 = ADDRESS OF INITIALIZATION PCE *
* R14 = RETURN ADDRESS *
* R15 = ADDRESS OF ENTRY POINT *
* *
* OUTPUT R15 = RETURN CODE *
* (ALL OTHERS UNCHANGED) *
* *

Appendix B. Table Pairs Coding Example 377

* EXIT-NORMAL = RETURN TO CALLER (HASPIRMA) *
* *
* EXIT-ERROR = RETURN TO CALLER (HASPIRMA) WITH NON-ZERO RETURN CODE *
* *
* EXTERNAL REFERENCES = SEE BELOW *
* *
* ROUTINES = MISCELLANEOUS JES2 SERVICE ROUTINES, AND *
* MISCELLANEOUS STANDARD SUPERVISOR SERVICE ROUTINES *
* *
* DATA AREAS = SEE $MODULE MACRO EXPANSION *
* *
* CONTROL BLOCKS = SEE $MODULE MACRO EXPANSION *
* *
* TABLES = SEE $MODULE MACRO DEFINITION (BELOW) *
* *
* MACROS = JES2 - $ENTRY, $GETMAIN, $MODCHK, $RETURN, $SAVE *
* *
* MACROS = MVS - NONE *
* *
* CHANGE ACTIVITY: GUIDE 65 - CHICAGO, ILL - 7/86 *
* CODE AT SP1.3.6/2.1.5 LEVEL *
* 1/88 - VARIOUS FIXES FOR T.B. *
* *
**

TITLE ’USER XITO INITIALIZATION -- PROLOG ($HASPGBL)’
COPY $HASPGBL COPY HASP GLOBALS @133

TITLE ’HASP XITO INITIALIZATION -- PROLOG ($MODULE)’ @133
HASPXITO $MODULE NOTICE=NONE, C

TITLE=’HASP XITO INITIALIZATION’, C
$DTE, GENERATE HASP DTE DSECT C
$ERA, GENERATE HASP ERA DSECT C
$HCT, GENERATE HASP HCT DSECT C
$HASPEQU, GENERATE HASP EQUATES DSECT C
$MCT, GENERATE HASP MCT DSECT C
$MIT, GENERATE HASP MIT DSECT C
$MITETBL, GENERATE HASP MITETBL DSECT C
$MODMAP, GENERATE HASP MODMAP DSECT C
$PCE, GENERATE HASP PCE DSECT C
$TQE, GENERATE HASP TQE DSECT C
$USERCBS, GENERATE HASP USERCB DSECT C
$XECB GENERATE HASP XECB DSECT C

TITLE ’USER XITO INITIALIZATION -- EXIT0 - OBTAIN AND SET C
NECESSARY INFORMATION’

* *
* EXIT0 - INSTALLATION EXIT 0 ROUTINE *
* *
* FUNCTION: *
* *
* THIS EXIT POINT OBTAINS A $UCT CONTROL BLOCK, INITIALIZES *
* IT AND PLACES ITS ADDRESS IN THE $HCT. THIS ROUTINE ALSO *
* INITIALIZES THE $MCT WITH THE SPECIFIED INSTALLATION TABLE *
* ADDRESSES. *
* *
* LINKAGE: *
* *
* CALL BY JES2 INITIALIZATION *
* *
* ENVIRONMENT: *
* *
* JES2 MAIN TASK LIMITED (INITIALIZATION). *
* *
* RECOVERY: *
* *

378 z/OS V1R4.0 JES2 Macros

* NONE *
* *
* REGISTER USAGE (ENTRY/EXIT): *
* *
* REG VALUE ON ENTRY VALUE ON EXIT *
* *
* R0 WHERE INIT OPTIONS *
* SPECIFIED UNCHANGED *
* R1 ADDR OF PARM LIST UNCHANGED *
* R2-R10 N/A UNCHANGED *
* R11 HCT BASE ADDRESS UNCHANGED *
* R12 N/A UNCHANGED *
* R13 INIT PCE BASE ADDRESS UNCHANGED *
* R14 RETURN ADDRESS UNCHANGED *
* R15 ENTRY ADDRESS RETURN CODE (SEE BELOW) *
* *
* PARAMETER LIST: *
* *
* +0 - ADDR OF INIT OPTIONS STRING *
* +4 - LENGTH OF INIT OPTIONS STRING *
* *
* REGISTER USAGE (INTERNAL): *
* *
* REG VALUE *
* *
* R0-R3 WORK REGISTERS *
* R4 MTE ENTRY ADDRESS *
* R5 MCT BASE ADDRESS *
* R6-9 WORK REGISTER *

* R10 UCT BASE ADDRESS *
* R11 HCT BASE ADDRESS *
* R12 LOCAL BASE ADDRESS *
* R13 INIT PCE BASE ADDRESS *
* R14 LINK/WORK REGISTER *
* R15 LINK/WORK REGISTER *
* *
* RETURN CODES (R15 ON EXIT): *
* *
* 0 - PROCESSING SUCCESSFUL (NO ERRORS) *
* 12 - PROCESSING FAILED, TERMINATE JES2 *
* *
* OTHER CONSIDERATIONS: *
* *
* N/A *
* *

SPACE 1
USING UCT,R10 ESTABLISH UCT ADDRESSABILITY
SPACE 1

EXIT0 $ENTRY BASE=R12 DEFINE HASPXITO ENTRY POINT
SPACE 2

$SAVE TRACE=NO,NAME=EXIT0 GET NEW SAVE AREA, SAVE REGS
LR R12,R15 ESTABLISH BASE REGISTER
CLC $UCT,$ZEROS ALREADY OBTAINED $UCT...
BNE XITRET0 YES, RETURN TO JES2
EJECT

* *
* OBTAIN AND INITIALIZE THE UCT *
* *

SPACE 1
$GETMAIN RC,LV=UCTLEN,SP=0,LOC=ANY OBTAIN THE $UCT
LTR R15,R15 GETMAIN SUCCESSFUL...
BNZ XITGTERR NO, INDICATE ERROR ALLOCATING STOR
SPACE 1
LR R2,R1 SET TO

Appendix B. Table Pairs Coding Example 379

LA R3,UCTLEN CLEAR THE
SLR R15,R15 STORAGE FOR
MVCL R2,R14 THE $UCT
SPACE 1
ST R1,$UCT SET UCT ADDRESS IN $HCT
LR R10,R1 SET UCT ADDRESSABILITY
MVC UCTID,=CL4’UCT’ SET UCT ID
MVC UCTSYNUM,$H1 SET NUMBER OF PCE(S) TO DEFINE
EJECT

* *
* LOAD MODULE THAT CONTAINS THE SECURITY PCE, SECURITY DTE, *
* AND THE NECESSARY TABLES TO INSTALL INSTALLATION TAILORING *
* *

SPACE 1
L R1,$HASPMAP GET THE HASP MODMAP ADDRESS
ICM R1,B’1111’,MAPADDR+MAPJXMOD-MAP(R1) IF HASPXJ00 IN
BNZ XITMODAD HASJES20, SKIP LOAD

SPACE 1
$MODCHK NAME=’HASPXJ00’,LOAD=YES,TEST=(MIT,VERSION), C

MESSAGE=YES,ERRET=XITGTERR LOAD THE INSTALLATION MODULE
SPACE 1
LR R1,R0 GET EP ADDRESS IN R1

XITMODAD ST R1,UCTSCDE SAVE THE LOAD MODULE ADDRESS @MES
EJECT

* *
* SEARCH THROUGH MODULE TO FIND ENTRY POINTS FOR THE SECURITY *
* PCE, SECURITY DTE, PCE TABLE, DTE TABLE, TID TABLE, WORK *
* SELECTION TABLE, AND THE $SCAN TABLE. *
* *

SPACE 1
USING MTE,R4 ESTABLISH MTE ADDRESSABILITY
USING MCT,R5 ESTABLISH MCT ADDRESSABILITY
SPACE 1
L R5$MCT OBTAIN THE MCT ADDRESS
L R4,MITENTAD-MIT(,R1) OBTAIN THE MITABLE ADDRESS

XITOLP LA R6,XITOTBL1 OBTAIN THE TBL OF ENTRY POINTS ADDR
LA R7,XITOTBLL GET THE NUMBER OF ENTRIES IN TABLE
CLI MTENAME,X’FF’ FOUND END OF TABLE...
BE XITENDT YES, GO VERIFY ADDRESSES

XITOMTL LH R1,TBLFLDOF(,R6) OBTAIN THE OFFSET TO THE FIELD
CLC MTENAME,TBLNAME(R6) ENTRY IN MIT MATCH REQUEST IN TABLE
BNE XITOTB NO, INCREMENT TO NEXT TABLE ENTRY
CLC TBLFLDCB(L’TBLFLDCB,R6),$ZEROS YES,CB THE UCT...
BE XITOUCT YES, GO SET FIELD ADDRESS IN UCT
ALR R1,R5 SET THE FIELD ADDRESS IN THE MCT
B XITOMVC GO SET ENTRY ADDRESS IN MCT
SPACE 1

XITOUCT ALR R1,R10 SET FIELD ADDRESS IN THE UCT
XITOMVC MVC 0(4,R1),MTEADDR MOVE ENTRY ADDR INTO CONTROL BLOCK

B XITOPLC GO CHECK NEXT MIT ENTRY
SPACE 1

XITOTB LA R6,TBLENTYL(,R6) INCREMENT TO NEXT TABLE ENTRY
BCT R7,XITOMTL CHECK NXT TBL ENTRY AGAINST MITABL

XITOLPC LA R4,MTELEN(,R4) INCREMENT TO NEXT MITABLE ENTRY
B XITOLP CONTINUE SEARCH FOR ENTRY POINTS
EJECT

* *
* VERIFY THAT THE NECESSARY ADDRESS HAVE BEEN FOUND *
* *

380 z/OS V1R4.0 JES2 Macros

SPACE 1
XITENDT LA R6,XITOTBL1 SET THE ADDRESS TO TABLE

LA R7,XITOTBLL SET THE NUMBER OF ENTRIES

XITCLCLP LH R1,TBLFLDOF(,R6) OBTAIN THE OFFSET INTO THE CB
CLC TBLFLDCB(L’TBLFLDCB,R6),$ZEROS CONTROL BLOCK THE UCT...
BE XITUCT YES, GO CHECK IT
AL R1,$MCT NO, GET THE MCT FIELD ADDRESS
B XITCLC GO CHECK IF ADDRESS SET
SPACE 1

XITUCT ALR R1,R10 GET THE UCT FIELD ADDRESS
XITCLC CLC 0(4,R1),$ZEROS FIELD SET...

BE XITGTERR NO, EXIT WITH AN ERROR
LA R6,TBLENTYL(,R6) BUMP TO NEXT TABLE ENTRY
BCT R7,XITCLCLP GO CHECK NEXT TABLE ENTRY
SPACE 1

* *
* SET GOOD RETURN CODE AND RETURN *
* *

SPACE 1
XITRET0 SLR R15,R15 INDICATE GOOD RETURN

B XITRET GO RETURN TO JES2
SPACE 1

* *
* SET ERROR RETURN AND RETURN TO JES2 *
* *

SPACE 1
XITGTERR LA R15,12 INDICATE ERROR RETURN

SPACE 1
XITRET $RETURN TRACE=NO,RC=(R15) END OF EXIT0 INITIALIZATION

EJECT

* *
* BUILD THE TABLE OF ENTRY POINTS THAT ARE TO BE FOUND. *
* THE TABLE CONSISTS OF: *
* *
* CL8’NAME OF ENTRY POINT’, *
* AL2(OFFSET INTO EITHER UCT OR MCT OF FIELD TO SET) *
* AL2(0 IF UCT OR 1 IF MCT) *
* *

SPACE 1
DS 0F

XIT0TBL1 DC CL8’USCTPCE’,AL2(UCTMSCTY-UCT),AL2(0)
DC CL8’USCTDTE’,AL2(UCTMDSCY-UCT),AL2(0)
DC CL8’USERPCET’,AL2(MCTPCETU-MCT),AL2(1)
DC CL8’USERDTET’,AL2(MCTDTETU-MCT),AL2(1)
DC CL8’USERTIDT’,AL2(MCTTIDTU-MCT),AL2(1)
DC CL8’USERSTWT’,AL2(MCTSTWTU-MCT),AL2(1)
DC CL8’USEROSTT’,AL2(MCTOSTTU-MCT),AL2(1)

XIT0TBLL EQU (*-XIT0TBL1)/12 CALC NUMBER OF ENTRIES
SPACE 1

TBLNAME EQU 0,8 NAME OF ENTRY POINT
TBLFLDOF EQU 8,2 FIELD OFFSET
TBLFLDCB EQU 10,2 FIELD CONTROL BLOCK
TBLENTYL EQU 12 LENGTH OF TABLE ENTRY

TITLE ’HASP XIT0 INITIALIZATION -- EPILOG ($MODEND)’
$MODEND ,

APARNUM DC CL7’XXXXXXX’ APAR NUMBER
END , END OF HASPXITO

Appendix B. Table Pairs Coding Example 381

User Extension Code and Tables
XJ00 TITLE ’USER EXTENSION MODULE -- PROLOG (MODULE COMMENT BLOCK)’

* *
* MODULE NAME = HASJES20 (HASPXJ00 CSECT) *
* *
* DESCRIPTIVE NAME = HASPXJ00 CSECT OF JES2 MAIN MODULE *
* *
* STATUS = OS/VS2 - SEE $MODULE EXPANSION BELOW FOR FMID, VERSION *
* *
* FUNCTION = THE HASPXJ00 CSECT CONTAINS THE INSTALLATION SECURITY *
* PROCESSOR, THE INSTALLATION SECURITY SUBTASK, AND *
* THE INSTALLATION PCE, DTE, TRACE, WORK SELECTION, *
* AND $SCAN TABLES. *
* *
* NOTES = SEE BELOW *
* *
* DEPENDENCIES = JES2 PROCESSOR AND SUBTASK DISPATCHING *
* *
* RESTRICTIONS = THIS CODE IS PROVIDED AS AN EXAMPLE OF *
* INSTALLATION EXTENSIONS TO JES2. THIS CODE IS *
* NOT TO BE CONSIDERED TYPE 1 SUPPORTED CODE OF *
* IBM. *
* *
* REGISTER CONVENTIONS = SEE ENTRY POINT DOCUMENTATION *
* *
* MODULE TYPE = PROCEDURE, TABLE (CSECT TYPE) *
* *
* PROCESSOR = OS/VS ASSEMBLER H OR ASSEMBLER XF (370) *
* *
* MODULE SIZE = SEE $MODEND MACRO EXPANSION AT END OF ASSEMBLY *
* *
* ATTRIBUTES = HASP REENTRANT, RMODE 24, AMODE 24/31. *
* *
* ENTRY POINT = USCTPCE - INITIAL ENTRY TO SECURITY PROCESSOR *
* USCTDTE - INITIAL ENTRY TO THE SUBTASK USED FOR *
* AUTHORIZATION CHECKES *
* USERPCET - ENTRY FOR INSTALLATION PCE TABLE *
* USERDTET - ENTRY FOR INSTALLATION DTE TABLE *
* USERTIDT - ENTRY FOR INSTALLATION TRACE ID TABLE *
* USERSTWT - ENTRY FOR ISNTALLATION OFFLOAD SYSOUT *
* TRANSMITTER WORK SELECTION TABLE *
* USEROSTT - ENTRY FOR INSTALLATION OFFLOAD SYSOUT *
* TRANSMITTER OPERAND TABLE *
* *

* PURPOSE = SEE FUNCTION *
* *
* LINKAGE = SEE ENTRY POINT DOCUMENTATION *
* *
* INPUT = SEE ENTRY POINT DOCUMENTATION *
* *
* OUTPUT = SEE ENTRY POINT DOCUMENTATION *
* *
* EXIT-NORMAL = SEE ENTRY POINT DOCUMENTATION *
* *
* EXIT-ERROR = SEE ENTRY POINT DOCUMENTATION *
* *
* EXTERNAL REFERENCES = SEE BELOW *
* *
* ROUTINES = NONE *
* *
* DATA AREAS = SEE $MODULE MACRO SPECIFICATION *
* *
* CONTROL BLOCKS = SEE $MODULE SPECIFICATION *
* *

382 z/OS V1R4.0 JES2 Macros

* TABLES = SEE $MODULE MACRO SPECIFICATION *
* *
* MACROS = JES2 - $ACTIVE, $AMODE, $CALL, $DECODE, $DORMANT, $DTEDYN, *
* $ENTRY, $MODULE, $PCETAB, $REGS, $RETURN, $SAVE, *
* $SCANTAB, $STIMER, $STORE, $TIDTAB, $TRACE, $WAIT, *
* $WSTAB *
* *
* MACROS = MVS - ATTACH, DEQ, ENQ, ESTAE, POST, SDUMP, WAIT *
* *
* CHANGE ACTIVITY: GUIDE 65, CHICAGO, ILL - 7/86 *
* CODE AT SP1.3.6/2.1.5 LEVEL *
* 1/88 VARIOUS FIXES BY BDB, SA, JK, MES, SWW FOR TB *
* *

TITLE ’USER EXTENSION MODULE -- PROLOG ($HASPGBL)’
COPY $HASPGBL COPY HASP GLOBALS
TITLE ’USER EXTENSION MODULE -- PROLOG ($MODULE)’

HASPJX00 $MODULE NOTICE=NONE, C
ENTRIES=(USERPCET,USERDTET,USERTIDT,USERSTWT,USEROSTT), C
TITLE=’USER EXTENSION MODULE’, C
$DCT, GENERATE HASP DCT DSECT C
$DTE, GENERATE HASP DTE DSECT C
$DTETAB, GENERATE HASP DTETAB DSECT C
$ERA, GENERATE HASP ERA DSECT C
$HASPEQU, GENERATE HASP EQUATES DSECT C
$HCT, GENERATE HASP HCT DSECT C
$JQE, GENERATE HASP JQE DSECT C
$MIT, GENERATE HASP MIT DSECT C
$PCE, GENERATE HASP PCE DSECT C
$PCETAB, GENERATE HASP PCETAB DSECT C
$RDRWORK, GENERATE HASP RDRWORK DSECT C

$SCANTAB, GENERATE HASP SCANTAB DSECT C
$SCAT, GENERATE HASP SCAT DSECT C
$TIDTAB, GENERATE HASP TIDTAB DSECT C
$TLGWORK, GENERATE HASP TLGWORK DSECT C
$TQE, GENERATE HASP TQE DSECT C
$TRP, GENERATE HASP TRP DSECT C
$TTE, GENERATE HASP TTE DSECT C
$USERCBS, GENERATE USER DSECTS C
$WSTAB, GENERATE HASP WSTAB DSECT C
$XECB GENERATE HASP XECB DSECT

TITLE ’USER EXTENSION MODULE -- INTRO - BRIEF OVERVIEW OF
FUNCTION AND RELATED PIECES’

* *
* FUNCTION -- THIS MODULE CONTAINS THE INSTALLATION EXTENSION CODE *
* AND TABLES THAT ARE REQUIRED TO CREATE AN INSTALLATION *
* SECURITY PROCESSOR, SECURITY SUBTASK, TRACE ID, WORK *
* SELECTION CRITERIA ON THE OFFLOAD SYSOUT TRANSMITTER *
* WORK SELECTION LIST, AND AN ADDITIONAL OPERAND ON THE *
* OFFLOAD SYSOUT TRANSMITTER. *
* *
* REQUIRED PIECES -- HASPXJ00 - THIS MODULE *
* $UCT - CONTAINS REQUIRED FIELDS FOR TABLE *
* GENERATION *
* $SCDWORK - SUBTASK DTE EXTENSION TO HOLD FIELDS *
* SPECIFIC TO A SECURITY SUBTASK *
* $SCYWORK - PROCESSOR PCE EXTENSION TO HOLD *
* FIELDS SPECIFIC TO A SECURITY *
* PROCESSOR *
* $USERCBS - CONTROL BLOCK THAT ACTUALLY GENERATES *
* THE ABOVE MACROS. THIS CONTROL BLOCK *
* IS KNOWN BY $MODULE AND IS THE WAY *
* FOR AN INSTALLATION TO GET $MODULE TO *
* GENERATE THEIR CONTROL BLOCKS *
* HASPXITO - EXIT 0 MODULE THAT CONTAINS EXIT0. *

Appendix B. Table Pairs Coding Example 383

* THIS EXIT INITIALIZES THE $MCT WITH *
* THE ADDRESSES OF THE INSTALLATION *
* TABLES LOCATED IN HASPXJ00. *
* *

USCTPCE - INITIAL ENTRY POINT
TITLE ’USER EXTENSION MODULE -- USCTPCE - SECURITY PROCESSOR, C

INITIAL ENTRY POINT’

* *
* PROCESSOR NAME -- USCTPCE *
* *
* DESCRIPTIVE NAME -- USER SECURITY PROCESSOR *
* *
* FUNCTION -- MANAGE THE INSTALLATION SECURITY SAF CALLS BY PASSING *
* A REQUEST TO THE SECURITY PROCESSOR’S SECURITY *
* SUBTASK TO ISSUE THE SAF CALL. *
* *
* NOTES -- BECAUSE A JES2 PROCESSOR IS NOT ALLOWED TO DIRECTLY *
* ISSUE AN OS WAIT, USCTPCE ATTACHES A SUB-TASK TO *
* PERFORM THOSE FUNCTIONS REQUIRING WAITS, THE SUB-TASK, *
* USCTDTE, PERFORMS THE CALL TO THE SECURITY *
* AUTHORIZATION FACILITY (SAF). *
* *
* *
* REGISTER CONVENTIONS -- R0 - R2 -- WORK REGISTERS *
* R3 -- ADDRESS OF $DTE *
* R4 -- ADDRESS OF WORK ELEMENT *
* R5 - R9 -- WORK REGISTERS *
* R10 -- ADDRESS OF $UCT *
* R11 -- ADDRESS OF $HCT *
* R12 -- BASE ADDRESSABILITY *
* R13 -- ADDRESS OF PCE *
* R14 -- LINKAGE REGISTER *
* R15 -- LINKAGE REGISTER *
* *

EJECT

* *
* USCTPCE INITIAL ENTRY POINT *
* *

SPACE 2
USING UCT,R10 ESTABLISH UCT ADDRESSABILITY
SPACE 1

USCTPCE $ENTRY BASE=R12 PROVIDE PROCESSOR ENTRY POINT
SPACE 1
L R10,$UCT OBTAIN THE UCT ADDRESS
EJECT

* *
* MAIN LOOP OF THE SECURITY PROCESSOR *
* *

SPACE 1
USCTYLOP $ACTIVE INDICATE PROCESSOR ACTIVE
1

BZ USCATACH NO, GO ATTACH IT
TM DTEFLAG1-DTE(R3),DTE1ACTV SUBTASK ACTIVE...
BO USCTEST YES, GO QUEUE UP MEMBER
SPACE 1

* *
* DETACH THE SECURITY SUBTASK (ABENDED) *

384 z/OS V1R4.0 JES2 Macros

* *

SPACE 1
$DTEDYN DETACH,ID=UDTESCTY,DTE=(R3),WAIT=XECB C

DETACH ABENDED SUB-TASK
XC SCYDTEAD,SCYDTEAD CLEAR DTE ADDR
EJECT

* *
* (RE)-ATTACH THE SECURITY SUBTASK *
* *

SPACE 1
USCATACH $DTEDYN ATTACH,ID=UDTESCTY,WAIT=XECB,ERRET=USCATERR C

ATTACH USCTDTE
ST R1,SCYDTEAD STORE SUBTASK DTE ADDRESS
MVC XECBECB-XECB+DTEIXECB-DTE(,R1),$ZEROS CLEAR C

COMMUNICATION ECB
LR R3,R1 SET THE SUBTASK DTE ADDRESS
ST R11,SCDHCT(,R3) STORE HCT ADDRESS IN DTE XTNSN @SA

* *
* DETERMINE IF THERE IS WORK TO BE DONE *
* *

SPACE 1
USCTEST ICM R4,B’1111’,UCTSYQUE ANYWORK TO DO...

BNZ USCWORK YES, GO DO IT
SPACE 1

$DORMANT INDICATE THAT PROCESSOR COMPLETE
SPACE 1

$WAIT SCTY,INHIBIT=NO WAIT FOR WORK
B USCTYLOP GO CHECK FOR WORK TO DO
EJECT

* *
* SET UP FOR SUB-TASK TO PROCESS JOB *
* *
* INSTALLATION CODE WOULD GO HERE TO PASS TO SUBTASK THE NECESSARY *
* INFORMATION (THROUGH THE DTE EXTENSION THAT IS UNIQUE FOR THE *
* SECURITY SUBTASK). *
* *

SPACE 1
USCWORK DS 0H

XC UCTSYQUE INDICATE WORK BEING PROCESSED (IN C
REALITY THIS WOULD PROBABLY UNCHAIN C
THE REQUEST, NOT CLEAR THE QUEUE)

EJECT

* *
* MVS POST THE SUBTASK FOR WORK TO DO AND $WAIT FOR IT TO *
* COMPLETE. NOTE THAT THE CALL TO THE SUBTASK IS $TRACE’D, *
* IF TRACING IS ACTIVE. *
* *

SPACE 1
MVC XECBECB-XECB+DTEIXECB-DTE(,R3),$ZEROS CLEAR ECB C

FOR $WAIT
LA R1,DTEWECB-DTE(,R3) POINT TO THE WORK ECB
SPACE 1
POST (1) POST SECURITY SUBTASK FOR WORK
SPACE 1

$TRACE ID=255,LEN=USCSAFML,OFF=USCTROFF,NAME=SAFCALL
MVC 0(USCSAFML,R1),USCSAFM SET INFORMATION TO BE TRACED
SPACE 1

USCTROFF LR R1,R3 GET DTE ADDRESS

Appendix B. Table Pairs Coding Example 385

$WAIT OPER,XECB=DTEIXECB-DTE(,R1) $WAIT FOR SUB-TASK C
TO POST US

EJECT

* *
* SUBTASK HAS POSTED US BACK *
* *
* INSTALLATION CODE WOULD GO HERE TO VALIDATE THE SUCCESS OF THE *
* SECURITY CALL AND TO DO ANY PROCESSING RELEVANT TO THE SUCCESS *
* OR FAILURE OF THE CALL. *
* *

SPACE 1
DS 0H VALIDATE THE RESULT OF THE SECURITY C

CALL.
SPACE

* *
* BRANCH TO OBTAIN THE NEXT ITEM TO VERIFY *
* *

SPACE 1
B USCTEST GO CHECK FOR MORE WORK
EJECT

* *
* AN ERROR WAS ENCOUNTERED ON THE ATTACH OF THE SUBTASK. *
* WAIT FOR 30 SECONDS AND ATTEMPT TO TRY AGAIN. *
* *

SPACE 1
USCATERR LA R1,SCYTQE GET ADDRESS OF PCE TQE

LA R0,30 SET TIME INTERVAL
ST R0,TQETIME(,R1) IN TQE
ST R13,TQEPCE(,R1) STORE PCE ADDRESS IN TQE

$TIMER (41) CHAIN THIS TQE
$WAIT WORK AND WAIT FOR INTERVAL TO ELAPSE
B USCATACH GO ATTACH SUBTASK
SPACE 1

* *
* LIST LITERALS AND SUSPEND ADDRESSABILITIES. *
* *

SPACE 1
LTORG
SPACE 1
DROP R10,R12,R13 SUSPEND UCT, BASE, AND PCE ADDRESS

USCTDTE - SECURITY SUBTASK, INITIAL ENTRY POINT
TITLE ’USER EXTENSION MODULE -- USCTDTE - SECURITY SUBTASK, C

INITIAL ENTRY POINT’

* *
* USCTDTE - USER SECURITY SUBTASK *
* *
* FUNCTION: *
* *
* THIS IS AN EXAMPLE OF A USER CODED SECURITY SUBTASK. THIS *
* SUBTASK IS DEFINED BY THE USERDTET DTE TABLE. THIS SUBTASK *
* IS ATTACHED BY THE USCTPCE SECURITY PROCESSOR. THE *
* PURPOSE OF THIS SUBTASK IS TO CODE THE SAF CALL TO VERIFY *
* THE ELEMENT THAT WAS PASSED TO IT FROM THE SECURITY *
* PROCESSOR. *
* *
* LINKAGE: *

386 z/OS V1R4.0 JES2 Macros

* *
* CONTROL GIVEN BY MVS VIA AN ATTACH MVS CALL. *
* *
* ENVIRONMENT: *
* *
* JES2 SUBTASK *
* *
* RECOVERY: *
* *
* MVS ESTAE ESTABLISH UPON ENTRY. THE RECOVERY ROUTINE IS *
* PROVIDED BY THE $STABEND ROUTINE LOCATED IN HASPRAS. *
* *
* REGISTER USAGE (ENTRY/EXIT): *
* *
* REG VALUE ON ENTRY VALUE ON EXIT *
* *
* R0 N/A UNPREDICTABLE *
* R1 DTE ADDRESS AS SPECIFIED *
* ON THE ATTACH CALL UNPREDICTABLE *
* R2-R14 N/A UNPREDICTABLE *
* R15 ENTRY ADDRESS UNPREDICTABLE *
* *
* PARAMETER LIST: *
* *
* ALL NECESSARY INFORMATION LOCATED IN THE DTE, AS PASSED *
* BY THE ATTACHING PROCESSOR. *
* *
* REGISTER USAGE (INTERNAL): *
* *
* REG VALUE *
* *
* R0-R10 WORK REGISTERS *
* R11 HCT BASE ADDRESS *
* R12 LOCAL BASE ADDRESS *
* R13 DTE BASE ADDRESS *
* R14 LINK/WORK REGISTER *
* R15 LINK/WORK REGISTER *

* *
* RETURN CODES (R15 ON EXIT): *
* *
* N/A *
* *
* OTHER CONSIDERATIONS: *
* *
* N/A *
* *

SPACE 1
USING HCT,R11 ESTABLISH HCT ADDRESSABILITY
USING DTE,R13 ESTABLISH DTE ADDRESSABILITY
SPACE 1

USCTDTE $ENTRY BASE=R12 USER SECURITY SUB-TASK
LR R12,R15 SET LOCAL BASE
LR R13,R1 SET DTE BASE
L R11,SCDHCT SET HCT BASE @SA

* @BDB
*USCXA $AMODE 31,RELATED=(USC37) FORCE 31-BIT MODE FOR UDTESCTY
* @BDB
* REMOVED THE $AMODE BECAUSE THE $MODULE ENVIRONMENT IS JES2. @BDB
* THIS CAUSES THE EXPANSION TO GENERATE A CONSTANT $HIBITON @BDB
* WHICH RESIDES IN THE HCT. SINCE WE DON’T AUTOMATICALLY @BDB
* HAVE ADDRESSABILITY TO THE HCT IN A SUBTASK WE ABEND IN @BDB
* EXECUTION. @BDB
* THIS IS NOT A PROBLEM IF THIS ROUTINE IS COPIED INTO ITS @BDB
* OWN MODULE AND THEN CODE THE $MODULE WITH ENVIRON=SUBTASK. @BDB
* @BDB

Appendix B. Table Pairs Coding Example 387

USCXA LA R15,USCXA01 PSEUDO $AMODE $AMODE @BDB

0 R15,HIGHON SET HI BIT ON $AMODE @BDB
BSM R0,R15 SET MODE $AMODE @BDB

HIGHON DC 0F’0’,X’80000000’ MASK FOR 31 BIT MODE $AMODE @BDB
USCXA01 DS 0H RESUME $AMODE @BDB

SPACE 1

* *
* SET THE RETRY ROUTINE, THE CLEAN-UP ROUTINE, AND THE *
* VRA EXIT ROUTINE ADDRESSES. *
* *
* INSTALLATION SHOULD SET THE DTERTXAD, DTEESXAD, AND DTEVRXAD *
* FOR THE RETRY ROUTINE ADDRESS, THE CLEAN-UP ROUTINE ADDRESS *
* AND THE VRA EXIT ROUTINE ADDRESS RESPECTIVELY, IF THESE *
* ROUTINES ARE NEEDED. *
* *

SPACE 1
L R2,$STABNDA GET SUBTASK ESTAE RTN ADDRESS
LR R3,R13 COPY DTE ADDRESS
EJECT

* *
* E S T A B L I S H E S T A E E N V I R O N M E N T *
* *

SPACE 1
MVC DTEAWRKA(USCSTLN),USCABND MOVE ESTAE PARM LIST
SPACE 1
ESTAE (2),PARAM=(3),RECORD=YES,MF=(E,DTEAWRKA) C

ESTABLISH RECOVERY ENVIRONMENT
SPACE 1
OI DTEFLAG1,DTE1ACTV SHOW SUBTASK ACTIVE

*
* INSTALLATION SHOULD INITIALIZE THE DTE EXTENSION FOR THE SUBTASK
* HERE
*

USCTDTE - SECURITY SUBTASK, MAIN PROCESSING
TITLE ’USER EXTENSION MODE -- SECURITY SUBTASK, C

MAIN PROCESSING’

* *
* NOTIFY PROCESSOR THAT WORK NEEDED AND WAIT FOR A RESPONSE *
* *

SPACE 1
USCPOST XC DTEWECB,DTEWECB CLEAR WORK ECB

SPACE 1
POST DTEIXECB POST PROCESSOR FOR WORK
SPACE 1
TM DTEFLAG1,DTE1TERM SUBTASK SHUTDOWN REQUESTED...
BO USCRET YES, EXIT TO DELETE SECURITY SUBT
SPACE 1
WAIT ECB=DTEWECB ELSE WAIT FOR WORK TO DO
SPACE 1
TM DTEFLAG1,DTE1TERM SUBTASK SHUTDOWN REQUESTED...
BO USCRET YES, EXIT TO DELETE SECURITY SUBT
EJECT

* @BDB
* ISSUE A MVS WTO TO INDICATE THAT THE SUBTASK IS @BDB
* EXECUTING. @BDB
* @BDB

388 z/OS V1R4.0 JES2 Macros

SPACE 1
LA R1,USMSG901 @BDB
WTO MF=(E,(1)) @BDB
SPACE 1

* *
* GO POST THE PROCESSOR FOR WORK *
* *

SPACE 1
B USCPOST GO POST PROCESSOR FOR WORK

USCTDTE - SECURITY SUBTASK, TERMINATION
TITLE ’USER EXTENSION MODULE -- SECURITY SUBTASK, C

TERMINATION

* *
* TERMINATE SECURITY SUBTASK *
* *
* NOTE THAT THE MAIN TASK TERMINATION CODE WAITS 30 SECONDS *
* FOR THE SUBTASK TO GO AWAY BEFORE CONTINUING. IF THE MAIN *
* TASK COMPLETES TERMINATION BEFORE THE SUBTASK DOES (DUE TO *
* DEBUG TRACING IN THE SUBTASK), AND A03 ABEND WILL RESULT. *
* *

SPACE 1
USCRET DS 0H
USC37 $AMODE 24,RELATED=(USCXA) AMODE 24 FOR SECURITY TERMINATION

SPACE 1
ESTAE 0 CANCEL ESTAE
SVC 3 THEN RETURN TO SYSTEM
EJECT

* *
* CREATE THE ESTAE PARAMETER LIST AND TRACED INFORMATION *
* *

SPACE 1
USCABND ESTAE ,CT,PURGE=NONE,ASYNCH=YES,TERM=NO,MF=L
USCSTLN EQU *-USCABND LENGTH OF ESTAE PARAMETER LIST

SPACE 1
USCSAFM DC C’THIS IS TRACE DATA THAT SHOULD BE FILLED IN FOR

INSTALLATION USE IN TRACING SECURITY CALLS’
USCSAFML EQU *-USCSAFM

SPACE 1
$MID 901 @BDB

USMSG901 WTO ’$MID. SECURITY SUBTASK INVOKED’, @BDBC
MF=L,ROUTCDE=10,DESC=6 @BDB

SPACE 1
DROP R13 DROP DTE ADDRESSABILITY

TROUTE255 - TRACING ROUTINE FOR SAF CALL
TITLE ’USER EXTENSION MODULE -- TROUT255 - TRACING ROUTINE C

FOR SAFCALL ID=255’

* *
* TROUT255 - TRACING ROUTINE IN SUPPORT OF THE TRACE ID 255. *
* *
* FUNCTION: *
* *
* THIS ROUTINE WILL BE CALLED TO FORMAT THE TRACE RECORD FOR *
* THE INSTALLATION TRACE ID 255. THIS ROUTINE SHOULD BE *
* ALTERED BY THE INSTALLATION TO FORMAT THE INFORMATION THAT *
* WAS SAVED ON THE TRACING OF THIS ID. *
* *

Appendix B. Table Pairs Coding Example 389

* LINKAGE: *
* *
* BALR R14,15 TO BY HASPMISC *
* *
* ENVIRONMENT: *
* *
* THIS ENVIRONMENT IS CALL FROM THE JES2 MAIN TASK *
* *
* RECOVERY: *
* *
* NONE. *
* *
* REGISTER USAGE (ENTRY/EXIT): *
* *
* REG VALUE ON ENTRY VALUE ON EXIT *
* *
* R0 N/A UNCHANGED *
* R1 TRACE TABLE BUFFER ADDR UNCHANGED *
* R2 TRACE TABLE ENTRY (TTE) UNCHANGED *
* R3 N/A UNCHANGED *
* R4 TRACE ID TABLE ENTRY UNCHANGED *
* R5 POINTER TO REMAINING OUT- POINTER TO LOCATION OUT- *
* PUT AREA IN PRINT RECORD PUT AREA AFTER THIS ENTRY*
* R6-R10 N/A UNCHANGED *
* R11 HCT BASE ADDRESS UNCHANGED *
* R12 N/A UNCHANGED *
* R13 PCE BASE ADDRESS UNCHANGED *
* R14 RETURN ADDRESS UNCHANGED *
* R15 ENTRY ADDRESS 0 *
* *
* PARAMETER LIST: *
* *
* NONE. *
* *
* REGISTER USAGE (INTERNAL): *
* *
* REG VALUE *
* *
* R0-R1 WORK REGISTERS *
* R2 TTE ADDRESS *
* R3 LOCATION IN TTE *

* R4 WORK REGISTER *
* R5 LOCATION IN OUTPUT AREA *
* R6-R8 WORK REGISTER *
* R9 *** RESERVED *** *
* R10 WORK REGISTER *
* R11 HCT BASE ADDRESS *
* R12 LOCAL BASE ADDRESS *
* R13 PCE BASE ADDRESS *
* R14 LINK/WORK REGISTER *
* R15 LINK/WORK REGISTER *
* *
* RETURN CODES (R15 ON EXIT): *
* *
* 0 - PROCESSING SUCCESSFUL (NO ERRORS) *
* *
* OTHER CONSIDERATIONS: *
* *
* MUST RETURN THE NEW VALUE OF R5 ON EXIT (I.E., $STORE (R5)) *
* *

SPACE 1
USING TTE,R2 ESTABLISH TTE ADDRESSABILITY
USING PCE,R13 ESTABLISH PCE ADDRESSABILITY
SPACE 1

TROUT255 $ENTRY BASE=R12 ID=255 TRACE FORMATTER ROUTINE
$SAVE NAME=TROUT255,TRACE=NO SAVE CALLERS REGISTERS

390 z/OS V1R4.0 JES2 Macros

LR R12,R15 ESTABLISH BASE ADDRESS
SPACE 1
LA R3,TTEDATA POINT TO THE TTE DATA
MVC 0(USCSAFML,R5),0(R3) SET THE TRACED INFO IN OUTPUT AREA
LA R0,USCSAFML(,R5) POINT BEYOND INFORMATION
SL R0,TLGBSAVE AND FIND LENGTH OF PRINT LINE
L R15,$TRCPUT GET TRCPUT ROUTINE ADDRESS AND@BDB

$CALL (R15) GO PRINT THE LINE @JK
$STORE (R5) INSURE NEW BUFFER IS PASSED BACK
SPACE 1

$RETURN TRACE=NO RETURN TO CALLER
SPACE 1

$DROP R2,R12,R13 SUSPEND TTE,LOCAL,AND PCE ADDRESS

WSTRKGRP - WORK SELECTION ROUTINE
TITLE ’USER EXTENSION MODULE -- WSTRKGRP - WORK SELECTION C

ROUTINE FOR TRKGRP CRITERIA’

* *
* WSTRKGRP - WORK SELECTION ROUTINE TO COMPARE THE DCT’S *
* AND JQE’S NUMBER OF TRACK GROUPS *
* *
* FUNCTION: *
* *
* THIS ROUTINE WILL BE CALLED TO INSURE THAT THE JOB’S NUMBER *
* OF TRACK GROUPS IS EQUAL TO OR BEYOND THE DCT’S THRESHOLD. *
* *
* LINKAGE: *
* *
* BALR R14,15 TO BY HASPSERV *
* *
* ENVIRONMENT: *
* *
* THIS ENVIRONMENT IS CALL FROM THE JES2 MAIN TASK. *
* *
* RECOVERY: *
* *
* NONE. *
* *
* REGISTER USAGE (ENTRY/EXIT): *
* *
* REG VALUE ON ENTRY VALUE ON EXIT *
* *
* R0 N/A UNCHANGED *
* R1 N/A UNPREDICATABLE *
* R2 ADDR OF CRITERION BEING *
* PROCESSED UNCHANGED *
* R4-R5 N/A UNCHANGED *
* R6 N/A UNPREDICTABLE *
* R7 COMPARISON LENGTH UNPREDICTABLE *
* R8 ADDR OF DEVICE FIELD UNCHANGED *
* R9 N/A UNCHANGED *
* R10 ADDR OF COMPARISON FIELD UNCHANGED *
* R11 HCT BASE ADDRESS UNCHANGED *
* R12 N/A UNCHANGED *
* R13 PCE BASE ADDRESS UNCHANGED *
* R14 RETURN ADDRESS UNCHANGED *
* R15 ENTRY ADDRESS 0 *
* *
* PARAMETER LIST: *
* *
* NONE *
* *
* REGISTER USAGE (INTERNAL): *
* *
* REG VALUE *

Appendix B. Table Pairs Coding Example 391

* *
* R0 N/A *
* R1 ADDR OF JQE *

* R2 ADDR OF CRITERION BEING *
* PROCESSED *
* R4-R5 N/A *
* R6 N/A *
* R7 COMPARISON LENGTH *
* R8 ADDR OF DEVICE FIELD *
* R9 N/A *
* R10 ADDR OF COMPARISON FIELD *
* R11 HCT BASE ADDRESS *
* R12 N/A *
* R13 PCE BASE ADDRESS *
* R14 LINKAGE REGISTER *
* R15 LINKAGE REGISTER *
* *
* RETURN CODES (R15 ON EXIT): *
* *
* 4 - CONTINUE CRITERIA PROCESSING, ACCEPTABLE CONDITION *
* 12 - UNACCEPTABLE CONDITION, CRITERIA DO NOT MATCH *
* *
* OTHER CONSIDERATIONS: *
* *
* $SAVE AND $RETURN NOT USED FOR PERFORMANCE REASONS *
* *

SPACE 1
ENTRY WSTRKGRP ESTABLISH ENTRY POINT
USING WSTRKGRP,R6 ESTABLISH ADDRESSABILITY
USING PCE,R13 ESTABLISH PCE ADDRESSABILITY
SPACE 1

WSTRKGRP LR R6,R15 SET ADDRESSABILITY
BCTR R7,0 PREPARE LENGTH FOR EXECUTES
LR R15,R10 SET THE JQE FIELD ADDRESS
SL R15,=A(JQETGNUM-JQE) TO OBTAIN THE JQE ADDRESS
LR R1,R10 OBTAIN THE FIELD ADDRESS
TM JQEFLAG5-JQE(R15),JQE5XUSD NUM OF TGS IN EXT AREA...
BNO WSTTGN NO, GO DO COMPARISON
LH R1,JQETGNUM-JQE(,R15) GET THE OFFSET INTO EXT AREA
AL R1,$JQEEXT AND OBTAIN THE ADDRESS OF TGN

WSTTGN LA R15,12 ASSUME TG NO. NOT AT THRESHOLD
EX R7,WSTCLC TG NUMBER AT THRESHOLD...
BLR R14 NO, RETURN INDICATING NO MATCH
LA R15,4 YES, INDICATE MATCH
BR R14 RETURN TO CALLER
SPACE 1

WSTCLC CLC 0(*-*,R1),0(R8) *** EXECUTE ONLY ***
SPACE 1
DROP R6,R13 SUSPEND LOCAL & PCE ADDRESSABILITY

TABLES
TITLE ’USER EXTENSION MODULE -- USERPCET - TABLE FOR C

INSTALLATION SECURITY PROCESSOR’

* *
* DEFINE THE PROCESSOR TABLE *
* *

SPACE 1
USERPCET $PCETAB TABLE=USER
SCTYPCET $PCETAB NAME=SCTY,DESC=’SECURITY’,MODULE=HASPXJ00, C

ENTRYPT=UCTMSCTY,CHAIN=UCTSYPCE,COUNTS=UCTSYNUM, C
MACRO=$SCYWORK,WORKLEN=SCYLEN,GEN=INIT,DISPTCH=WARM, C
PCEFLGS=0,FSS=NO,PCEID=(0,UPCESCTY),DCTTAB=*-*

$PCETAB TABLE=END

392 z/OS V1R4.0 JES2 Macros

TITLE ’USER EXTENSION MODULE -- USERDTET - TABLE FOR C
INSTALLATION SECURITY SUBTASK

* *
* DEFINE THE SUBTASK TABLE *
* *

SPACE 1
USERDTET $DTETAB TABLE=USER

$DTETAB NAME=SECURITY,ID=UDTESCTY,EPNAME=USCTDTE, C
EPLOC=UCTMDSCY,HEAD=UCTSYDTE,WORKLEN=SCDLEN, C
GEN=NO,STAE=NO,SZERO=YES

$DTETAB TABLE=END

TITLE ’USER EXTENSION MODULE -- USERTIDT - TABLE FOR C
INSTALLATION TRACE ID TABLE(S)’

* *
* DEFINE THE TRACE ID TABLE *
* *

SPACE 1
USERTIDT $TIDTAB TABLE=USER

$TIDTAB ID=255,FORMAT=TROUT255,NAME=SAFCALL
$TIDTAB TABLE=END

TITLE ’USER EXTENTION MODULE -- USERSTWT - TABLE FOR C
INSTALLATION WORK SELECTION CRITERIA’

* *
* DEFINE THE WORK SELECTION CRITERIA TABLE *
* *

SPACE 1
USERSTWT $WSTAB TABLE=USER

$WSTAB NME=TRKGRP,MINLEN=2,ALIAS=TG,FLD=JQETGNUM,CB=JQE, C
DEVFLD=DCTUSERO,DEVCB=DCT,RTN=WSTRKGRP

$WSTAB TABLE=END

TITLE ’USER EXTENSION MODULE -- USEROSTT - TABLE FOR C
INSTALLATION SCAN TABLE FOR OFFN.STN’

* *
* DEFINE THE OFFLOAD SYSOUT TRANSMITTER OPERAND TABLE *
* *

SPACE 1
USEROSTT $SCANTAB TABLE=USER

$SCANTAB NAME=TRKGRP,MINLEN=2,FIELD=(DCTUSERO,2),DSECT=DCT, C
CONV=NUM,RANGE=(0,32767),CB=PARENT,CALLERS=($SCIRPL, C
$SCIRPLC,$SCDCMDS,$SCSCMDS)

$SCANTAB NAME=TG,CONV=ALIAS,SCANTAB=TRKGRP
$SCANTAB TABLE=END
EJECT

* *
* LIST THE LITERALS FOR THE HASPXJ00 MODULE *
* *

SPACE 1
LTORG ,

Appendix B. Table Pairs Coding Example 393

TITLE ’USER EXTENSION MODULE -- EPILOG ($MODEND)
$MODEND ,

APARNUM DC CL7’OZXXXXX’ APAR NUMBER
END , END OF HASPXJ00

394 z/OS V1R4.0 JES2 Macros

Appendix C. Miscellaneous Facilities Support

This appendix contains several facilities to allow you to further customize your
JES2. The following facilities are included:

v “Generalized JES2 Dispatcher Support”

v “Data Space Usage”

v “General Purpose Subtasking Facility” on page 396

v “Invoking the Security Authorization Facility (SAF)” on page 397

Generalized JES2 Dispatcher Support
The JES2 dispatcher is completely generalized, thereby making it easy for you to
add processor (PCE) resource queues without source code modification.

There are 64 general resource queues, of which JES2 uses the first 23. The
resource queue heads are in their own area pointed to by the $DRQUES field of
the HCT. The HCT also contains the event control fields and the $READY queue.

You can issue your own $WAITs and $POSTs, using equated symbols (or
hard-coded values, that is, $WAIT 54) in the same manner as JES2. You can also
use $$POST to post JES2 main task resources from subtasks or other address
spaces. The cross-system operand (MASPOST=) on the $POST macro is also
supported in this generalized scheme.

Data Space Usage
Data Spaces increase the amount of contiguous data that you can access. JES2
supports the use of data spaces through the $ARMODE and $DSPSERV macros.
The macros are used to build and access data spaces.

A data space is an area of virtual storage that the system creates for a user. It
provides the largest possible space for contiguous data, up to two gigabytes. You
can have multiple data spaces. A data space contains data only .

When a data space is created, the system gives the creating task an STOKEN
(space token). The STOKEN is an address space and data space identifier. When
the STOKEN is built, it is added to an access list.

An access list is a table in which each entry specifies an address space or a data
space. Each entry in the access list is pointed to by an access list entry token
(ALET). The ALET is placed in an access register (AR) to access the data in a data
space by qualifying the address contained in a general purpose register.

$ARMODE
Use the $ARMODE macro to turn the AR-mode ON or OFF, or to load the access
registers with ALETs. The access registers are loaded using the AR= parameter and
either the INIT= keyword or the ALET= keyword.

$DSPSERV
Use the $DSPSERV macro to create or delete a data space. The following
parameters are used to manage the data space:

© Copyright IBM Corp. 1988, 2002 395

NAME is used to name a data space. This name can help you locate the data
space in an IPCS dump.

STOKEN
names a register that will contain either the STOKEN that was created for
the data space or the STOKEN of a data space you want to delete.

ALET specifies the register or name of the storage area that contains the ALET of
the data space to be deleted, or the register or name of the storage area to
contain the ALET of a new data space.

BLOCKS
specifies the size (in 4K blocks) of the data space.

You can also specify if the data space is fetch protected (FPROT) or the owner of
the data space (OWNER).

For additional information about data space usage, see the following publications:
z/OS MVS Programming: Extended Addressability Guide
z/OS MVS Programming: Assembler Services Guide

General Purpose Subtasking Facility
The general purpose subtasking facility provides an easy way to call a service
routine from the JES2 main task. Use this facility to provide services, from the main
task, that might:
v Cause an MVS WAIT to occur
v Perform input or output operations
v Perform intensive calculations.

Using this facility increases your system’s parallel operations without forcing the
service to use a particular processor control element (PCE).

Using the General Purpose Subtasking Facility
To use the general purpose subtasking facility you must:

v Specify the number of general purpose subtasks that will be available on the
SUBTDEF initialization statement. The default number of subtasks is 10.

v Obtain a subtask queue descriptor ($SQD). Use the $GETWORK macro to
obtain the $SQD. Initialize the $SQD with an ID and VERSION.

v Determine what the priority for this subtask should be. The different priorities are:

– High priority – use for quick, interactive type requests. A service provided to a
TSO/E user is an example of a high-priority request.

– Low priority – calculation intensive or non-critical requests. Purge processing
is an example of a low-priority request.

– Regular priority – most requests.

Use the PRIORITY= parameter of the $SUBIT macro to indicate this priority.

v Begin subtask processing of the routine by coding a $SUBIT macro with the
appropriate parameters.

When $SUBIT returns to the calling routine, register 15 contains the return code
from the subtask processing. The $SUBIT macro description includes the meaning
of each return code. The $SQD will contain the contents of registers 0, 1, and 15
from the service you invoked.

396 z/OS V1R4.0 JES2 Macros

Invoking the Security Authorization Facility (SAF)
The security authorization facility (SAF) is the component of MVS that verifies a
user’s authorization to resources. These resources include commands, data sets,
jobs, nodes, printers, card readers, remotes, SYSIN, and SYSOUT. SAF verifies the
authorization by routing requests to the Resource Access Control Facility (RACF) or
any functionally equivalent security product. RACF determines if the user has
authority to a particular resource.

All JES2 resources have profile names in a specific format. See z/OS JES2
Initialization and Tuning Guide for examples of profile names.

JES2 invokes SAF when attempting to access a resource on behalf of itself or a
user. An installation can enhance SAF verification through:

v Exits 36 and/or 37

v Additional calls to SAF through $SEAS

v Defining additional resource names and verifying those resources through SAF.
The security administrator must then define the required resources to RACF in
specific resource classes.

Using $SEAS to invoke SAF
$SEAS is the macro JES2 uses as an interface to SAF. To invoke $SEAS you must:

1. Get a work access verification element ($WAVE) and place an ID and version in
it. The $WAVE macro maps the work access verification element.

2. Clear the WAVESQD field of the $WAVE.

3. Copy the list form of the RACROUTE macro into the WAVRACRP field of the
$WAVE. For more information about the RACROUTE macro, see z/OS MVS
Programming: Assembler Services Reference ABE-HSP.

4. Issue the modify form of the RACROUTE macro to update the parameter list at
WAVRACRP and supply any other parameters the RACROUTE macro requires.

Then, invoke SAF by issuing the $SEAS macro specifying the required parameters

v ENVIRON=

v FUNCODE=

v REQUEST=

v PRIORITY=

v WAIT= and WAVADDR= In most cases, you place a request to SAF and wait
for a response. To do this, code WAIT=YES and WAVADDR=(addr,INIT). When
SAF completes your request, register 15 contains the result of the verification as
a return code.

Figure 22 on page 398 illustrates a standard SAF call using $SEAS.

Appendix C. Miscellaneous Facilities Support 397

* *
* Get storage for a WAVE *
* *

GETMAIN RU,L=WAVLEN Get WAVE for $SEAS

USING WAVE,R3 Establish WAVE addressability
LR R3,R1 Set WAVE base address

L R10,TOKEN Set token address of requestor

* *
* Initialize RACF parameter list in the WAVE *
* *

MVC WAVRACRP(L’RACROUTL),RACROUTL Set parameter list

RACROUTE REQUEST=AUTH,WORKA=WAVRRWK,ATTR=UPDATE, C
ENTITY=PDBDSNAM,REQSTOR=SAFAUTH,RELEASE=1.9, C
LOGSTR=LGSYSSAF,RTOKEN=PDBTOKEN,CLASS=SPLCLASS, C
UTOKEN=(R10),MF=(M,WAVRACRP)

* *
* Invoke the $SEAS macro to verify access. *
* Even though CODER=USER is the default, it is shown here *
* for clarity. *
* *

$SEAS CODER=USER,WAVADDR=(R3),REQUEST=AUTH,FUNCODE=255, C
JOBMASK=(R4) Make the required SAF call

* *
* ENVIRON=, PRIORITY=, and WAIT= defaulted. Values taken are: *
* ENVIRON= -- current assembly environment *
* PRIORITY= -- Regular *
* WAIT= -- YES *
* *

Figure 22. Invoking SAF (Part 1 of 2)

398 z/OS V1R4.0 JES2 Macros

There may be times that your routine cannot wait for SAF to complete its
processing. In this case, you need to call $SEAS twice. For the first call, code
WAIT=NO and WAVADDR=(addr,INIT). This allows your program to continue its
work while SAF starts its processing. A non-zero return code at this point
indicates JES2 cannot make the request and you should decide what action to
take. To determine when SAF has completed its processing, test the field
SQDXECB against ECBPOST. When the result is non-zero, the processing is
complete.

If JES2 completes the first call successfully, you must reissue the $SEAS macro
with WAIT=YES and WAVADDR=(addr,NOINIT) to wait for SAF to complete
verification. Do not clear the WAVESQD before making the second call.
Figure 23 on page 400 illustrates this type of SAF call.

B SAFRETCD(15) Process return code
SAFRETCD B SAFOK +0 - User authorized

B SAFHUH +4 - SAF cannot decide
B SAFFAIL +8 - User not authorized
.
.
.
.

* *
* RACROUTE macro parameters "REQSTOR" and "LOGSTR" used *
* in the audit record to identify the call. *
* *

LGSYSSAF DC AL1(L’LGSYSST) RACROUTE
LGSYSST DC C’USER DATA SET AUTH CALL ’ Log string

SAFAUTH DC CL8’USERAUTH’ Requestor ID for AUTH
call

* *
* RACROUTE list form for REQUEST=AUTH for data set authorization *
* *

RACROUTX RACROUTE REQUEST=AUTH,MF=L,RELEASE=1.9,DECOUPL=YES
RACROUTL EQU RACROUTX,*-RACROUTX Length of list form

* *
* RACROUTE class name for spool data sets *
* *

SPLCL DC AL1(L’SPLCLV) Length of JESSPOOL class
SPLCLV DC C’JESSPOOL’ JESSPOOL class
SPLCLASS EQU SPLCL,*-SPLCL,C’X’ JESSPOOL SAF class

Figure 22. Invoking SAF (Part 2 of 2)

Appendix C. Miscellaneous Facilities Support 399

* *
* Get storage for a WAVE *
* *

GETMAIN RU,L=WAVLEN Get WAVE for $SEAS

USING WAVE,R3 Establish WAVE addressability
LR R3,R1 Set WAVE base address

L R10,TOKEN Set token address of requestor

* *
* Initialize RACF parameter list in the WAVE *
* *

MVC WAVRACRP(L’RACROUTL),RACROUTL Set parm list

RACROUTE REQUEST=AUTH,WORKA=WAVRRWK,ATTR=READ, C
ENTITY=PDBDSNAM,REQSTOR=SAFAUTH,RELEASE=1.9, C
LOGSTR=LGSYSSAF,RTOKEN=PDBTOKEN,CLASS=SPLCLASS, C
UTOKEN=(R10),MF=(M,WAVRACRP)

* *
* Invoke the $SEAS macro to initiate a SAF authorization *
* request *
* Even though CODER=USER is the default, it is shown here *
* for clarity. *
* *

$SEAS CODER=USER,WAVADDR=(R3),REQUEST=AUTH,FUNCODE=254, C
WAIT=NO Make the required SAF call

Figure 23. Invoking SAF from Time-critical Environments (Part 1 of 3)

400 z/OS V1R4.0 JES2 Macros

* *
* ENVIRON=, and PRIORITY= defaulted. Values taken are: *
* ENVIRON= -- current assembly environment *
* PRIORITY= -- Regular *
* *

.

. Perform other work

.

* *
* Invoke the $SEAS macro to verify access. *
* Even though CODER=USER and WAIT=YES are defaults, they are *
* shown here for clarity. *
* *

$SEAS CODER=USER,WAVADDR=(R3,NOINIT),WAIT=YES C
Make the required SAF call

B SAFRETCD(15) Process return code
SAFRETCD B SAFOK +0 - User authorized

B SAFHUH +4 - SAF cannot decide
B SAFFAIL +8 - User not authorized
.
.
.

* *
* RACROUTE macro parameters "REQSTOR" and "LOGSTR" used *
* in the audit record to identify the call. *
* *

LGSYSSAF DC AL1(L’LGSYSST) RACROUTE
LGSYSST DC C’READ ACCESS AUTH CALL ’ Log string

SAFAUTH DC CL8’USERAUTH’ Requestor ID for AUTH call

* *
* RACROUTE list form for REQUEST=AUTH for data set authorization *
* *

RACROUTX RACROUTE REQUEST=AUTH,MF=L,RELEASE=1.9,DECOUPL=YES
RACROUTL EQU RACROUTX,*-RACROUTX Length of list form

Figure 23. Invoking SAF from Time-critical Environments (Part 2 of 3)

Appendix C. Miscellaneous Facilities Support 401

* *
* RACROUTE class name for spool data sets *
* *

SPLCL DC AL1(L’SPLCLV) Length of JESSPOOL class
SPLCLV DC C’JESSPOOL’ JESSPOOL class
SPLCLASS EQU SPLCL,*-SPLCL,C’X’ JESSPOOL SAF class

Figure 23. Invoking SAF from Time-critical Environments (Part 3 of 3)

402 z/OS V1R4.0 JES2 Macros

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 403

404 z/OS V1R4.0 JES2 Macros

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1988, 2002 405

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and condition
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication primarily documents information that is NOT intended to be used as
Programming Interfaces of z/OS.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS. This information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

v Programming Interface information

v End of Programming Interface information

Notices

406 z/OS V1R4.0 JES2 Macros

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries or both:
v ACF/VTAM
v Advanced Function Printing
v AnyNet
v AFP
v AS/400
v BookManager
v DFSMS/MVS
v DFSMSdfp
v DFSMSdss
v DFSMShsm
v DFSMSrmm
v DFSORT
v eNetwork
v ESCON
v FFST
v GDDM
v IBM
v IBMLink
v IMS
v MVS/DFP
v MVS/ESA
v MVS/SP
v OS/2
v OS/390
v PR/SM
v Print Services Facility
v Processor Resource/System Manager
v RACF
v Resource Link
v RMF
v S/370
v SOMobjects
v SP
v SP2
v System/36
v System/370
v System/390
v SystemView
v VisualLift
v VTAM
v z/OS
v z/OS.e

Other company, products, and service names may be trademarks or service marks
of others.

Notices

Notices 407

408 z/OS V1R4.0 JES2 Macros

Glossary

This glossary defines technical terms and
abbreviations used in JES2 documentation. If you
do not find the term you are looking for, refer to
the index of the appropriate JES2 manual or view
IBM Glossary of Computing Terms, available from:

www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by an asterisk (*) that
appears between the term and the beginning of
the definition; a single definition taken from ANSI
is identified by an asterisk after the item number
for that definition.

A
ACB. Access control block

ACF. Advanced communication function

address space. The complete range of addresses
available to a program. See also virtual address space.

Advanced Function Presentation (AFP). A set of
licensed programs, together with user applications, that
use the all-points-addressable concept to print on
presentation devices. AFP includes creating, formatting,
archiving, retrieving, viewing, distributing, and printing
information. See presentation device.

affinity. The condition under which one or more
members of a JES2 multi-access spool configuration
may be designated as qualified to execute certain jobs.

AFP. See Advanced Function Presentation

all-member warm start. A JES2 member restart of the
first member in a multi-access spool (MAS)
configuration. Either the JES2 member previously ended
without error or there must be an IPL of the MVS
system.

all points addressability. The ability to address,
reference, and position text, overlays, and images at
any defined position or pel on the printable area of the
paper. This capability depends on the ability of the
hardware to address and to display each picture
element.

allocate. To assign a resource for use in performing a
specific task.

APA. See all points addressability

APAR. Authorized program analysis report

APPC. Advanced Program-to-Program
Communication.

APT. Application table

artificial JQE. An artificial JQE consists of the base
JQE, the JQX, and additional fields defined in the JQA.

automatic restart. A restart that takes place during
the current run, that is, without resubmitting the job. An
automatic restart can occur within a job step or at the
beginning of a job step. Contrast with deferred restart.
See also checkpoint restart.

automatic volume recognition (AVR). A feature that
allows the operator to mount labeled volumes on
available I/O devices before the volumes are needed by
a job step.

AVR. Automatic volume recognition

B
background. (1) In multiprogramming, the
environment in which low-priority programs are
executed. (2) Under TSO/E the environment in which
jobs submitted through the SUBMIT command or SYSIN
are executed. One job step at a time is assigned to a
region of central storage, and it remains in central
storage to completion. Contrast with foreground.

background job. (1) A low-priority job, usually a
batched or non-interactive job. (2) Under TSO, a job
entered through the SUBMIT command or through
SYSIN. Contrast with foreground job.

BAL. Basic assembler language

batch processing. (1) *Pertaining to the technique of
executing a set of computer programs such that each is
completed before the next program of the set is started.
(2) *Pertaining to the sequential input of computer
programs or data. (3) *Loosely, the serial execution of
computer programs. (4) Under TSO, the processing of
one job step in a region, so called because jobs are
submitted in a group or batch.

baud. (1) A unit of signaling speed equal to the
number of discrete conditions or signal events per
second. For example, one baud equals one-half dot
cycle per second in Morse code, one bit per second in a
train of binary signals, and one 3-bit value per second in

© Copyright IBM Corp. 1988, 2002 409

a train of signals each of which can assume one of
eight different states. (2) In asynchronous transmission,
the unit of modulation rate corresponding to one unit
interval per second; that is, if the duration of the unit
interval is 20 milliseconds, the modulation rate is 50
baud.

binary synchronous communication (BSC).
Communication using binary synchronous transmission.

binary synchronous transmission. Data
transmission in which synchronization of characters is
controlled by timing signals generated at the sending
and receiving stations.

bind. In SNA products, a request to activate a session
between two logical units.

broadcast data set. Under TSO, a system data set
containing messages and notices from the system
operator, administrators, and other users. Its contents
are displayed to each terminal user when he logs on the
system, unless suppressed by the user.

BSAM. Basic sequential access method

BSC. Binary synchronous communication

BSCA. Binary synchronous communication adapter

burst. *To separate continuous-form paper into
discrete sheets.

C
cataloged data set. A data set that is represented in
an index or hierarchy of indexes that provide the means
for locating it.

cataloged procedure. A set of job control statements
that has been placed in a library and that can be
retrieved by name.

CCW. Channel command word

central storage. (1) In z/OS or System/390 virtual
storage systems, the storage of a z/OS or System/390
computing system from which the central processing
unit can directly obtain instructions and data, and to
which it can directly return results. (Formerly referred to
as “real storage”.) (2) Synonymous with processor
storage.

centralized control. Control in which all the primary
station functions of the data link are centralized in one
data station. Contrast with independent control.

CES. Connection event sequence

chain printer. An impact printer that has a revolving
chain with links that carry the type slugs.

change log. Area of the checkpoint data set that
contains the specific control blocks changed by the last
member of the multi-access spool configuration to own
the checkpoint data set.

channel-to-channel (CTC). A method of connecting
two computing devices.

channel-to-channel (CTC) adapter. A device for
connecting two channels on the same processor or on
different processors.

checkpoint. (1) *A place in a routine where a check,
or a recording of data for restart purposes, is performed.
(2) A point at which information about the status of a job
and the system can be recorded so that the job step
can be later started. (3) To record information about the
status of a job and the system for restart purposes.

checkpoint data set. A data set in which information
about the status of a job and the system can be
recorded so that the job step can be restarted later.

checkpoint reconfiguration. A process used by JES2
to dynamically redefine checkpoint data set
specifications for a JES2 MAS.

checkpoint reconfiguration dialog. An interactive
form of a JES2 checkpoint reconfiguration where the
operator directs the reconfiguration process with replies
to a series of WTOR messages.

checkpoint restart. The process of resuming a job at
a checkpoint within the job step that caused abnormal
termination. The restart may be automatic or deferred,
where deferred restart involves resubmitting the job.
See also automatic restart; deferred restart. Contrast
with step restart.

checkpoint write. Any write to the checkpoint data
set. A general term for the primary, intermediate, and
final writes that update any checkpoint data set.

checkpoint/restart facility. (1) A facility for restarting
execution of a program at some point other than at the
beginning, after the program was terminated due to a
program or system failure. A restart can begin at a
checkpoint or from the beginning of a job step, and
uses checkpoint records to reinitialize the system. (2)
Under TCAM, a facility that records the status of the
teleprocessing network at designated intervals or
following certain events. Following system failure, the
system can be restarted and continue without loss of
messages.

checkpointing. Preserving processing information
during a program’s operation that allows such
processing to be restarted and duplicated.

CKPT1. The checkpoint data set designed as the one
on which the reserve is acquired. In a DUAL mode
configuration, CKPT1 is one of the alternately used
primary data sets from which JES2 reads and writes the

410 z/OS V1R4.0 JES2 Macros

checkpoint. In a DUPLEX mode configuration, CKPT1 is
the primary checkpoint data set.

CKPT2. In a DUAL mode configuration, CKPT2 is one
of the alternately-used checkpoint data sets from which
JES2 reads and writes the checkpoint. In a DUPLEX
mode configuration, CKPT2 is the back-up copy
(generally down-level) of the primary checkpoint data
set (CKPT1) which can be used to replace CKPT1 if
necessary. CKPT2 is formatted the same as CKPT1.
(Previously CKPT2 was the DUPLEX checkpoint data
set).

CLPA. Common link pack area

CMB. Console message buffer

CMS. Cross memory services

cold start. A JES2 member start that initializes data
areas and accounting information in central storage and
the job and output queues.

communication line. Any physical link, such as a wire
or telephone circuit, for connecting geographically
dispersed computer systems.

complex. The maximum set of hardware and software
resources that support one or more images of a single
operating system.

configuration. The arrangement of a computer system
or network as defined by the nature, number, and chief
characteristics of its functional units.

connection event sequence. A clock value that
indicates the time a connection took place or was
broken. This is copied to NCC records and used by the
path manager to determine the “most current” record
when keeping track of NJE connections.

console. Any device from which operators can enter
commands or receive messages. For JES2, the same
device from which an operator also enters MVS base
control program commands.

control statements. Statements placed into an input
stream to identify special JES2 processing options for
jobs.

CSA. Common service area

CSECT. Control section

CTC. Channel-to-channel adapter

D
DASD. Direct access storage device

data integrity point. The generic name given to the
point in the 3800 model 3 printing process at which the
data is known to be secure. (Also called the stacker.)

data set forwarding. The dynamic replacement of the
checkpoint data set specifications (data set name and
volume) with new specifications.

data set separator pages. Those pages of printed
output that delimit data sets.

DCT. Device control table

deallocate. To release a resource that is assigned to a
specific task.

dedicated. Pertaining to the assignment of a system
resource - a device, a program, or a whole system - to
an application or purpose.

deferred-printing mode. A printing mode that spools
output through JES to a data set instead of printing it
immediately. Output is controlled by JCL statements.

deferred restart. A restart performed by the system
when a user resubmits a job. The operator submits the
restart deck to the system through a system input
reader. See also checkpoint restart. Contrast with
automatic restart.

dependent job control (DJC). A method of handling
multiple jobs that must be run in a specific order
because of job dependencies.

despooling. The process of reading records off the
spool into central storage. During the despooling
process, the physical track addresses of the spool
records are determined.

destination. A combination of a node name and one
of the following: a userid, a remote printer or punch, a
special local printer, or LOCAL (the default if only a
node name is specified).

destination identifier (destid). The 8-character
subscript on the DESTID(jxxxxxxx) initialization
statement or command that corresponds to a
combination of a first-level destination and a
second-level destination that determines where data
should be sent in a JES2 installation. A destid can be
either a symbolic destination or an explicit destination.

destination node. Node to which data is sent.

device partitioning. A pool of devices (called a fence)
to be used exclusively by a set of jobs in a specific job
class allowing an installation to tailor its device usage to
its anticipated workload.

direct access storage device (DASD). A device in
which the access time is effectively independent of the
location of the data.

DJC. Dependent job control.

DUAL mode. A checkpointing mode that provides the
alternate use of two primary checkpoint data sets

Glossary 411

(CKPT1 and CKPT2). The data sets are referred to as
the to-be-read-from and to-be-written-to data sets.

dump. A report showing the contents of storage.
Dumps are typically produced following program
failures, for use as diagnostic aids.

DUPLEX mode. A checkpointing mode that provides
the continuous use of only one checkpoint data set. A
second (backup) data set is defined, but it is written to
less frequently than the primary.

dynamic allocation. Assignment of system resources
to a program at the time the program is executed rather
than at the time it is loaded into central storage.

dynamic connection. A connection created via
sign-on or NCC record sent from another node
Synonymous with non-static connection.

dynamic table. An installation-defined table that is
used to extend, modify, or delete the JES2 default
processing specifications. See also table pair.

E
EBCDIC. Extended binary coded decimal interchange
code

ECSA. Extended common service area

EM. End of media

end of block (EOB). A code that marks the end of a
block of data.

end-of-file mark (EOF). A code that signals that the
last record of a file has been read.

EOB. End of block

EOF. End of file

EPVT. Extended private storage area

execution node. The JES2 network job entry node
upon which a job is to be executed.

exit points. The place in the code where a routine
(exit) receives control from the system.

explicit destination. A destination identifier of the
form Nnnnn, Rmmmm, RMmmmm, RMTmmmm,
NnnnnRmmmm or Unnnn. See also destination identifier
and symbolic destination.

extended binary coded decimal interchange code
(EBCDIC). A set of 256 characters, each represented
by 8 bits.

external writer. A program that supports the ability to
write SYSOUT data in ways and to devices not
supported by the job entry subsystem.

F
facility. (1) A feature of an operating system, designed
to service a particular purpose, for example, the
checkpoint/restart facility. (2) A measure of how easy it
is to use a data processing system. Together with
system performance, a major factor on which the total
productivity of an installation depends. (3) Anything
used or available for use in furnishing communication
service. Commonly, a general term for communications
paths.

FCB. Forms control buffer

final write. A write of the same information as the
intermediate write done at the end of the checkpoint
cycle. See also intermediate write.

first-level destination. The nodal portion of a
destination (the node to which the data goes).

foreground. (1) in multiprogramming, the environment
in which high-priority programs are executed. (2) Under
TSO, the environment in which programs are swapped
in and out of central storage to allow CPU time to be
shared among terminal users. All command processor
programs execute in the foreground. Contrast with
background.

foreground job. (1) A high-priority job, usually a
real-time job. (2) A teleprocessing or graphic display job
that has an indefinite running time during which
communication is established with one or more users at
local or remote terminals. (3) Under TSO, any job
executing in a swapped region of central storage, such
as a command processor or a terminal user’s program.
Contrast with background job.

forms control buffer (FCB). A buffer that is used to
store vertical formatting information for printing; each
position corresponding to a line on the form.

forwarding. The dynamic replacement of the
checkpoint data set specifications (data set name and
volume) with new specifications.

FSA. Functional subsystem application

FSA startup. That part of system initialization when
the FSA is loaded into the functional subsystem address
space and begins initializing itself.

FSI. Functional subsystem interface

FSI connect. The FSI communication service which
establishes communication between JES2 and the FSA
or functional subsystem.

FSI disconnect. The FSI communication service
which severs the communication between JES2 and the
FSA or functional subsystem.

412 z/OS V1R4.0 JES2 Macros

FSI services. A collection of services available to
users (JES2) of the FSI. These services comprise
communication services, data set services, and control
services.

FSS. Functional subsystem

full function mode. The state that permits a printer to
produce page-mode output.

functional subsystem (FSS). An address space
uniquely identified as performing a specific function
related to the JES. For JES2, an example of an FSS is
the Print Services Facility program that operates the
3800 Model 3 and 3820 printers.

functional subsystem application (FSA). The
functional application program managed by the
functional subsystem.

functional subsystem interface (FSI). The interface
through which JES2 or JES3 communicate with the
functional subsystem.

functional subsystem startup. That process part of
system initialization when the functional subsystem
address space is created.

G
global command. A command that is recognized and
honored by any node in a JES2 network.

global processor. In JES3, the processor that controls
job scheduling and device allocation for a complex of
processors.

GMT. Greenwich mean time.

Greenwich mean time (GMT). The mean solar time of
the meridian of Greenwich used as the prime basis of
standard time throughout the world. See also TOD
clock.

H
handshaking. Exchange of predetermined signals
when a connection is established between two data set
devices.

HASP. Houston automatic spooling priority. A computer
program that provides supplementary job management,
data management, and task management functions,
such as: control of job flow, ordering of tasks, and
spooling. See also JES2.

HASP table. See JES2 table.

HCT. HASP communication table

host processor. (1) *In a network, the processing unit
in which resides the access method for that network. (2)

In an SNA network, the processing unit that contains a
system services control point (SSCP).

host system. *The data processing system to which a
network is connected and with which the system can
communicate.

host-id. The unique 10-digit CPU identification made
up of the 6-digit CPU serial number followed by a 4-digit
model number.

hot start. A JES2 member restart performed when a
member ends abnormally and the MVS system is not
re-IPLed.

I
I/O. input/output

IBM-defined exit. The point in source code where IBM
has added an exit point where an installation routine
can receive control from the operating system. Contrast
with installation-defined exit.

impact printer. *A printer in which printing results from
mechanical impacts.

independent control. In JES2, the process by which
each processor in a complex controls its own job input,
scheduling, and job output. Contrast with centralized
control.

independent mode. A means of isolating a processor
for testing purposes. A processor so designated will only
process jobs that are both routed to it and are
themselves designated to execute on a processor in
independent mode.

initial program load (IPL). The initialization procedure
that causes an operating system to commence
operation.

initialization data set. The data set that contains the
initialization statements and their parameters that
controls the initialization and ultimate processing of
JES2.

initialization parameter. An installation-specified
parameter that controls the initialization and ultimate
operation of JES2.

initialization statement. An installation-specified
statement that controls the initialization and ultimate
operation of JES2.

initiating task. The job management task that controls
the selection of a job and the preparation of the steps of
that job for execution.

initiator. That part of an operating system that reads
and processes operation control language statements
from the system input device.

Glossary 413

initiator/terminator. The job scheduler function that
selects jobs and job steps to be executed, allocates
input/output devices for them, places them under task
control, and at completion of the job, supplies control
information for writing job output on a system output
unit.

input service processing. In JES2, the process of
performing the following for each job: reading the input
data, building the system input data set, and building
control table entries.

input stream control. Synonymous with JES2 reader.

installation-defined exit. The point in source code
where an installation adds an exit point where an
installation routine can receive control from the
operating system. Contrast with IBM-defined exit.

interface. Hardware, software, or both, that links
systems, programs, or devices.

intermediate write. In DUAL mode, the write of the
change log records containing the control blocks that
have been updated since the last checkpoint write. In
DUPLEX mode (or DUAL mode where the change log
overflows the first track) the checkpoint write of the 4K
records.

internal reader. A facility that transfers jobs to JES.

interrupt. (1) *To stop a process in such a way that it
can be resumed. (2) In data transmission, to take an
action at a receiving station that causes the transmitting
station to terminate a transmission.

IOT. input/output table

IPL. initial program load

IPS. Installation performance specification

J
JCL. Job control language

JCT. Job control table

JES2. Job entry subsystem 2. An MVS subsystem that
receives jobs into the system, converts them to internal
format, selects them for execution, processes their
output, and purges them from the system. In an
installation with more than one processor, each
processor’s JES2 subsystem independently controls job
input, scheduling, and output processing.

JES2 reader. In MVS, the part of the job entry
subsystem that controls the input stream and its
associated job control statements. Synonymous with
input stream control.

JES2 table. A JES2-defined table that is used to
specify the default characteristics of many of its

initialization parameters, commands, and other
externals. See also table pair.

JES2 writer. In MVS, the part of the job entry
subsystem that controls the output of specified data
sets. Synonymous with output stream control.

JES3. Job entry subsystem 3. An MVS subsystem that
receives jobs into the system, converts them to internal
format, selects them for execution, processes their
output, and purges them from the system. In an
installation with multiple processors (a JES3 complex),
one processor’s JES3 subsystem exercises centralized
control over the other processors and distributes jobs to
them through use of a common job queue.

JIX. Job queue index

JMR. Job management record

job. A unit of work for an operating system. Jobs are
defined by JCL statements.

job class. Any one of a number of job categories that
can be defined. With the classification of jobs and
direction of initiator/terminators to initiate specific
classes of jobs, it is possible to control the mixture of
jobs that are performed concurrently.

job control language (JCL). A programming language
used to code job control statements.

job control language (JCL) statements. Statements
placed into an input stream to define work to be done,
methods to be used, and the resources needed.

job control statement. *A statement in a job that is
used in identifying the job or describing its requirements
to the operating system.

job entry subsystem (JES). An MVS facility that
receives jobs into the system and processes output data
produced by the jobs. See also JES2 and JES3.

job entry subsystem 2. See JES2.

job entry subsystem 3. See JES3.

job output element (JOE). Information that describes
a unit of work for the output processor and represents
that unit of work for queuing purposes.

job priority. A value assigned to a job that is used as
a measure of the job’s relative importance while the job
contends with other jobs for system resources.

job queue element (JQE). A control block that
represents an element of work for the system (job) and
is moved from queue to queue as that work moves
through each successive stage of JES2 processing.

job separator page data area (JSPA). A data area
that contains job-level information for a data set. This
information is used to generate job header, job trailer or

414 z/OS V1R4.0 JES2 Macros

data set header pages. The JSPA can be used by an
installation-defined JES2 exit routine to duplicate the
information currently in the JES2 separator page exit
routine.

job separator pages. Those pages of printed output
that delimit jobs.

JOE. Job output element

JOT. Job output table

K
keyword. A part of a command operand that consists
of a specific character string (such as DSNAME=).

keyword parameter. A parameter that consists of a
keyword, followed by one or more values. Contrast with
positional parameter. See also parameter.

L
label. (1) *One or more characters used to identify a
statement or an item of data in a computer program. (2)
An identification record for a tape or disk file.

line mode. A type of data with format controls that
only allow a printer to format data as a line.

line mode data. A type of data that is formatted on a
physical page by a printer only as a single line.

LMT. Load module table

local devices. Those devices that are directly
attached to the operating system without the need for
transmission facilities.

local processing environment. The collection of
devices all of which are locally attached. That is, they
are connected without the need for transmission
facilities.

local system queue area (LSQA). In MVS, one or
more segments associated with each virtual storage
region that contain job-related system control blocks.

locally attached. A manner of device connection
without the need for transmission facilities.

logical unit (LU). The combination of programming
and hardware of a teleprocessing subsystem that
functions like a terminal to VTAM.

logoff. (1) The procedure by which a user ends a
terminal session. (2) In VTAM, a request that a terminal
be disconnected from a VTAM application program.

logon. (1) The procedure by which a user begins a
terminal session. (2) In VTAM, a request that a terminal
be connected to a VTAM application program.

loop. A situation in which an instruction or a group of
instructions execute repeatedly.

LPA. Link pack area

LRECL. Logical record length

LSQA. Local system queue area

LU. Logical unit

M
machine check interruption. An interruption that
occurs as a result of an equipment malfunction or error.

MAS. See multi-access spool configuration.

MCS. Multiple console support

member. A JES2 instance of a MVS system

message. For communication lines, a combination of
characters and symbols transmitted from one point to
another. See also operator message.

MIT. Module information table

MLU. Multiple logical unit

multi-access spool complex. See multi-access spool
configuration.

multi-access spool configuration. Multiple systems
sharing the JES2 input, job and output queues (via a
checkpoint data set or coupling facility).

multi-access spool multiprocessing. Two or more
computing systems interconnected by an I/O
channel-to-channel adapter. The CPs can be different
types and have their own unique configurations.

multiple console support (MCS). A feature of MVS
that permits selective message routing to up to 32
operator’s consoles.

Multiple Virtual Storage (MVS). An operating system
that manages resources and work flow while jobs are
running.

multiprocessing. (1) *Pertaining to the simultaneous
execution of two or more computer programs or
sequences of instructions by a computer network. (2)
*Loosely, parallel processing. (3) Simultaneous
execution of two or more sequences of instructions by a
multiprocessor.

multiprocessing system. A computing system
employing two or more interconnected processing units
to execute programs simultaneously.

multiprocessor. (1) A computer employing two or
more processing units under integrated control. (2) A

Glossary 415

system consisting of two or more CPs (or ALUs, or
processors) that can communicate without manual
intervention.

MVS. Multiple virtual storage.

N
NACT. Network account table

NAT. The nodes attached table, which is an internal
JES2 control block containing information about each
pair of nodes connected, or recently disconnected.

NCC record. The network connection and control
records.

NCP. Network control program

NCP/VS. Network control program/VS

NDH. Network data set header

network. For JES2, two or more systems and the
connections over which jobs and data are distributed to
the systems. The other systems can be non-JES2
systems with compatible networking facilities.
Connections can be established through
communications paths using SNA or BSC protocols.

network job entry (NJE). A JES2 facility that provides
for the passing of selected jobs, system output data,
operator commands, and messages between
communicating job entry subsystems connected by
binary-synchronous communication lines,
channel-to-channel adapters, and shared queues.

Network Job Entry (NJE) facility. In JES2, a facility
which provides for the transmission of selected jobs,
operator commands, messages, SYSOUT data, and
accounting information between communicating job
entry nodes that are connected in a network either by
binary synchronous communication (BSC) lines
channel-to-channel (CTC) adapters, or by System
Network Architecture (SNA).

Network Job Entry facility. In JES2, a facility which
provides for the transmission of selected jobs, operator
commands, messages, SYSOUT data, and accounting
information between communicating job entry nodes
that are connected in a network either by binary
synchronous communication (BSC) lines or by
channel-to-channel (CTC) adapters.

network operator. (1) The person responsible for
controlling the operation of a telecommunication
network. (2) A VTAM application program authorized to
issue network operator commands.

NIP. Nucleus initialization program.

NIT. The node information table, which is an internal
JES2 control block containing information about each
NJE node.

NJE. Network job entry

NJH. Network job header

node. (1) One of the systems in a network of systems
connected by communication lines or CTC adapters. (2)
In VTAM, an addressable point in a telecommunication
system defined by a symbolic name. (3) In JES2 NJE,
one or more job entry subsystems sharing a common
job queue.

node name. An 8-character alphameric name which
represents a node to other parts of the NJE network.

non-impact printer. *A printer in which printing is not
the result of mechanical impacts; for example, thermal
printers, electrostatic printers, photographic printers.

non-static connection. A connection created via
sign-on or NCC record sent from another node
Synonymous with dynamic connection.

nonpageable dynamic area. *In MVS, an area of
virtual storage whose virtual addresses are identical to
real addresses; it is used for programs or parts of
programs that are not to be paged during execution.
Synonymous with V=R dynamic area.

nonpageable region. In MVS, a subdivision of the
nonpageable dynamic area that is allocated to a job
step or system task that is not to be paged during
execution. In a nonpageable region, each virtual
address is identical to its real address. Synonymous
with V=R region.

nucleus. That portion of a control program that always
remains in central storage.

nucleus initialization program (NIP). The MVS
component that initializes the resident control program.

O
offload. Moving jobs and work off the work queues to
remove them from contention for system resources, or
off spool to free up system work space.

operand. (1) *That which is operated upon. An
operand is usually identified by an address part of an
instruction. (2) Information entered with a command
name to define the data on which a command
processor operates and to control the execution of the
command processor.

operator commands. Statements that system
operators may use to get information, alter operations,
initiate new operations, or end operations.

416 z/OS V1R4.0 JES2 Macros

operator message. A message from an operating
system directing the operator to perform a specific
function, such as mounting a tape reel; or informing the
operator of specific conditions within the system, such
as an error condition.

operator orientation point. The generic name given
to the point in the 3800 model 3 printing process at
which the data becomes visible to the operator, and is
therefore the point at which all operator commands are
directed. Synonymous with transfer station.

output group. A set of a job’s output data sets that
share output characteristics, such as class, destination,
and external writer.

output stream control. Synonymous with JES2 writer.

output writer. A part of the job scheduler that
transcribes specified output data sets onto a system
output device independently of the program that
produced the data sets.

overlays. A collection of predefined data such as
lines, shading, text, boxes, or logos, that can be merged
with the variable data on a page while printing.

P
page. (1) In virtual storage systems, a fixed-length
block of instructions, data, or both, that can be
transferred between central storage and external page
storage. (2) To transfer instructions, data, or both,
between central storage and external page storage. (3)
The unit of output from an AFP printer, such as the
3800-3, running with full function capability or 3820
printer.

page data set. In z/OS or System/390 virtual storage
systems, a data set in external page storage in which
pages are stored.

page fault. In z/OS or System/390 virtual storage
systems, a program interruption that occurs when a
page that is marked “not in central storage” is referred
to by an active page.

page mode. The mode of operation in which the AFP
print (such as the 3800 Printing Subsystem) can accept
a page of data from a host processor to be printed on
an all points addressable output medium.

page mode data. A type of data that can be formatted
anywhere on a physical page. This data requires
specialized processing such as provided by the Print
Services Facility for AFP printers, such as the 3800-3
and 3820.

page mode environment checkpointing. That
process which preserves the information necessary to
resume page-mode printing.

page mode printer. An AFP printer, such as the 3800
model 3 and 3820, that can print page mode data.

pageable region. In MVS, a subdivision of the
pageable dynamic area that is allocated to a job step or
a system task that can be paged during execution.
Synonymous with V=V region.

paging. In z/OS or System/390 virtual storage
systems, the process of transferring pages between
central storage and external page storage.

paging device. In z/OS or System/390 virtual storage
systems, a direct access storage device on which pages
(and possibly other data) are stored.

parameter. (1) *A variable that is given a constant
value for a specific purpose or process. (2) See
keyword parameter, positional parameter.

password. A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements for gaining access to data.

patch. *To modify a routine in a rough or expedient
way.

path. In VTAM, the intervening nodes and lines
connected a terminal and an application program in the
host CPU.

path manager. The part of JES2 that controls NJE
sign-on, sign-off, keeps track of all other nodes and
connections in the network, and determines the best
path to reach those nodes. (JES2 is unique among
other NJE subsystems in keeping track of the network
topology through NCC records.)

PCE. Processor control element

pel. Picture element

PDDB. Peripheral data definition block

PEP. Partitioned emulator program

physical unit (PU). (1) The control unit or cluster
controller of an SNA terminal. (2) The part of the control
unit or cluster controller that fulfills the role of a physical
unit as defined by systems network architecture (SNA).

PLPA. Pageable link pack area

poly-JES. Concurrent operation of multiple copies of
JES2 on a single MVS system to allow an installation to
separate its primary production system(s) and test
system(s).

positional parameter. A parameter that must appear
in a specified location, relative to other parameters.
Contrast with keyword parameter. See also parameter.

PPL. Purge parameter list

Glossary 417

PRE. Processor recovery element

presentation device. A device that produces
character shapes, graphics pictures, images, or bar
code symbols on a physical medium. Examples of
physical media are display screens, paper, foils,
microfilm, and labels.

primary write. The write of the 4K records to the
down-level checkpoint data set to make it current.

Print Services Facility (PSF). An IBM licensed
program that produces printer commands from the data
set to it. PSF programs run on the z/OS, OS/390, MVS,
VM, VSE, OS/2, AIX, and OS/400 operating platforms.
For JES, PSF programs operates the 3800 model 3 and
3820 printers. PSF operates as a functional subsystem.

priority aging. A function of JES2 by which the longer
a job waits to be selected for processing, the greater
become its chances of being selected to run.

private connection. A connection known only to the
two nodes making the connection.

process mode. The mode in which SYSOUT data
exists and is to be processed by a JES output device.
There are two IBM-defined process modes: line mode
and page mode.

processor storage. See central storage.

program temporary fix (PTF). A temporary solution or
bypass for a problem diagnosed by IBM as the result of
a defect in a current unaltered release of the program.

protocols. Rules for using communication lines.
Protocols can identify the direction of data flow, where
data begins and ends, how much data is being
transmitted, and whether data or control information is
being sent.

PSF. Print Services Facility

PTF. Program temporary fix

PU. Physical unit.

Q
QSE. Shared queue element

queue. A line or list formed by items in a system
waiting for processing.

quick start. A JES2 member restart in an existing
multi-access spool (MAS) configuration. The JES2
member previously ended without error.

quiescing. *The process of bringing a device or a
system to a halt by rejection of new requests for work.

R
RACF. Resource Access Control Facility

read 1. A read of the first track of a checkpoint data
set. Usually performed as the initial I/O operation to a
checkpoint data set.

read 2. A read of the 4K page data records and any
change log records not contained on the first track from
a checkpoint data set. Usually performed after a READ
1 as the second checkpoint I/O operation in a
checkpoint cycle.

reader. A program that reads jobs from an input device
or data base file and places them on the job queue.

real address. In virtual storage systems, the address
of a location in central storage.

real storage. See central storage.

remote. RMT

remote job entry (RJE). Submission of job control
statements and data from a remote terminal, causing
the jobs described to be scheduled and executed as
though encountered in the input stream.

remote station. *Data terminal equipment for
communicating with a data processing system from a
location that is time, space, or electrically distant.

remote terminal. An input/output control unit and one
or more input/output devices attached to a system
through a data link.

remote terminal access method (RTAM). A facility
that controls operations between the job entry
subsystem (JES2) and remote terminals.

remote workstation. (1) *Data terminal equipment for
communicating with a data processing system from a
location that is time, space, or electrically distant.
Synonymous with remote station. (2) A workstation that
is connected to a system by means of data transmission
facilities.

RJE. Remote job entry

RMS. Recovery management support

RMT. Remote

RMT generation. Generation of remote workstations
for remote job entry.

routing. (1) The assignment of the communications
path by which a message or telephone call will reach its
destination. (2) In NJE, the path, as determined by NJE
or explicitly by the operator, that a job or SYSOUT data
set will take to reach its destination.

418 z/OS V1R4.0 JES2 Macros

routing code. A code assigned to an operator
message and used, in systems with multiple console
support (MCS), to route the message to the proper
console.

RPL. Request parameter list

RPS. Rotational position sensing

RTAM. Remote terminal access method

RTP. Remote terminal program

S
SAF. Security authorization facility

SAM. Sequential access method

SDLC. Synchronous data link control

SDSB. Spool data set browse

second-level destination. Specifies a remote
workstation, special local route code, userid, or LOCAL
or ANYLOCAL (for data not associated with a specific
routing).

secondary console. In a system with multiple
consoles, any console except the master console. The
secondary console handles one or more assigned
functions on the multiple console system.

security classification. (1) An installation-defined
level of security printed on the separator pages of
printed output. (2) In RACF, the use of security
categories, a security level, or both, to impose additional
access controls on sensitive resources. An alternative
way to provide security classifications it to use security
labels.

segments. A collection of composed text and images,
prepared before formatting and included in a document
when it is printed.

session. (1) The period of time during which a user of
a terminal can communicate with an interactive system;
usually, the elapsed time from when a terminal is logged
on to the system until it is logged off the system. (2)
The period of time during which programs or devices
can communicate with each other. (3) In VTAM, the
period of time during which a node is connected to an
application program.

setup. The preparation of a computing system to
perform a job or job step. Setup is usually performed by
an operator and often involves performing routine
functions, such as mounting tape reels and loading card
decks.

shared broadcasting. The two TSO data sets
SYS1.UADS (TSO user definition) and

SYS1.BRODCAST (TSO message transmission
definition) are shared by all systems in the multi-access
spool (MAS) complex.

simultaneous peripheral operations online (spool).
The reading and writing of input and output streams on
auxiliary storage devices, concurrently while a job is
running, in a format convenient for later processing or
output operations.

single-member warm start. A JES2 member restart
of a new member in an existing multi-access spool
(MAS) configuration. The JES2 member previously
ended abnormally. Before the restart can occur, there
must be an IPL of the MVS system.

single-processor complex. A processing environment
in which only one processor (computer) accesses the
spool and comprises the entire node.

SMF. System management facilities

SNA. Systems Network Architecture

special local. A routing in the form Unnnn, where
‘nnnn’ signifies a numeric value in the range of
1–32767. Usually, installations use this routing to
specify local printers and punches.

spin data set. A data set that is deallocated (available
for printing) when it is closed. Spin off data set support
is provided for output data sets just prior to the
termination of the job that created the data set.

spool. Simultaneous peripheral operations online.

spooled data set. A data set written on an auxiliary
storage device and managed by JES.

spooled data set browse (SDSB). An application that
allows a program to read spool data sets.

spooling. The reading and writing of input and output
streams on auxiliary storage devices, concurrently with
job execution, in a format convenient for later
processing or output operations.

SQA. System queue area

SRM. System resources manager

static connection. A connection (also called
“predefined connection” in earlier releases) between two
nodes created by either a JES2 initialization or an
operator command.

STC. Started task control

step restart. A restart that begins at the beginning of a
job step. The restart may be automatic or deferred,
where deferral involves resubmitting the job. Contrast
with checkpoint restart.

Glossary 419

subnet. Subset of a NJE network identified by an
eight-character ‘SUBNET’ name on the JES2 NODE
initialization statement. The grouping of nodes into
“SubNets” is based on the assumption that if you have
access to any node in the subnet, you have access to
them all.

subsystem. A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system.

SVC. Supervisor call instruction

SVC interruption. An interruption caused by the
execution of a supervisor call instruction, causing
control to be passed to the supervisor.

SWA. Scheduler work area

swap data set. A data set dedicated to the swapping
operation.

swapping. An MVS paging operation that writes the
active pages of a job to auxiliary storage and reads
pages of another job from auxiliary storage into central
storage.

symbol. (1) *A representation of something by reason
of relationship, association, or convention. (2) In MVS, a
group of 1 to 8 characters, including alphanumeric
characters and the three characters: #, @, $. The
symbol begins with either an alphabetic character or
one of the three characters (#,@,$).

symbolic address. *An address expressed in symbols
convenient to the computer programmer.

symbolic destination. A destination identifier
specifying a symbolic name that represents a JES2
destination. See also destination identifier and explicit
destination.

synchronous data link control (SDLC). A discipline
for managing synchronous, transparent, serial-by-bit
information transfer over a communication channel.
Transmission exchanges may be duplex or half-duplex
over switched or nonswitched data links. The
communication channel configuration may be
point-to-point, multipoint, or loop.

syntax. (1) *The structure of expressions in a
language. (2) The rules governing the structure of a
language.

SYSIN. A system input stream; also, the name used as
the data definition name of a data set in the input
stream.

SYSLOG. System log

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a data
set is to be written on a system output unit.

sysplex. A set of MVS systems communicating and
cooperating with each other through certain multisystem
hardware components and software services to process
customer workloads.

system affinity. See affinity.

system control programming. IBM-supplied
programming that is fundamental to the operation and
maintenance of the system. It serves as an interface
with program products and user programs and is
available without additional charge.

system management facilities (SMF). An MVS
component that provides the means for gathering and
recording information that can be used to evaluate
system usage.

system output writer. A job scheduler function that
transcribes specified output data sets onto a system
output unit, independently of the program that produced
the data sets.

system queue area (SQA). In MVS, an area of virtual
storage reserved for system-related control blocks.

system services control point. *In SNA, the focal
point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing directory
support and other session services for end users of the
network.

systems network architecture (SNA). The total
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through a communication system.

T
table pair. A set of JES2-defined, USER-defined, and
dynamic tables that an installation can use to modify
JES2 processing.

TCAM. Telecommunications access method.

telecommunications access method (TCAM). A
method used to transfer data between central storage
and remote or local terminals. Application programs use
either GET and PUT or READ and WRITE macro
instructions to request the transfer of data, which is
performed by a message control program. The message
control program synchronizes the transfer, thus
eliminating delays for terminal/output operations.

teleprocessing. The processing of data that is
received from or sent to remote locations by way of
telecommunication lines.

terminal. A device, usually equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a communication channel.

420 z/OS V1R4.0 JES2 Macros

text transparency. A provision that allows BSC to
send and receive messages containing any or all of the
256 character combinations in EBCDIC, including
transmission control characters. Transmission control
characters sent in a message are treated as data
unless they are preceded by the data link escape (DLE)
control character.

TGB. Track group block

TGBE. Track group block entry

tightly-coupled multiprocessing. Two computing
systems operating simultaneously under one control
program while sharing resources.

Time Sharing Option Extensions (TSO/E). A
licensed program that is based on the Time Sharing
Option (TSO). It allows MVS users to interactively share
computer time and resources.

time tolerance. The difference between the TOD
clocks on two adjacent nodes, beyond which the path
manager will not allow a session to be established.

time-of-day clock. See TOD clock.

TOD. Time-of-day

TOD clock. A timing device that counts units of time
based on the starting point of 00 hours, 00 minutes, and
00 seconds on January 1, 1900. Time-of-day (TOD)
information is used, for example, to monitor computer
operations and events.

token. Specifically defined for JES2 checkpoint
processing as a checkpoint identifier that is used to
determine checkpoint I/O status.

trace. (1) The record of a series of events. (2) To
record a series of a events as they occur. (3) A report
showing data relevant to a particular point in the
processing of a program. Traces are typically produced
for analysis of program performance, but they can also
be valuable diagnostic aids.

tracing routine. *A routine that provides a historical
record of specified events in the execution of a
program.

traffic. In data communication, the quantity of data
transmitted past a particular point in a path.

train printer. A printer in which the type slugs are
assembled in a train that moves along a track. Contrast
with chain printer.

transfer station. The point in the 3800 model 3
printing process at which the data set becomes visible
to the operator, and is therefore the point at which all
operator commands are directed. Synonymous with
operator orientation point.

TSO. Time-sharing option. See Time Sharing Option
Extensions (TSO/E).

TSO/E. Time Sharing Option Extensions

TSU. Time-sharing user

TTE. Trace table entry

type font. In printing, a set of type that is of a
particular size and style (for example, 10-point century
school book).

U
UCB. Unit control block

UCS. Universal character set.

unallocate. See deallocate.

unit. (1) *A device having a special function. (2) A
basic element.

unit address. The address of a particular device,
specified at the time a system is installed; for example,
191 or 293.

universal character set (UCS). A printer feature that
permits the use of a variety of character arrays.

user identification (USERID). A 1-8 character symbol
identifying a system user.

user table. An installation-defined table that is used to
extend, modify, or delete the JES2 default processing
specifications. See also table pair.

USERID. User identification.

V
V=R dynamic area. Synonymous with nonpageable
dynamic area.

V=R region. Synonymous with nonpageable region.

V=V region. Synonymous with pageable region.

VIO. virtual input/output

virtual address space. In virtual storage systems, the
virtual storage assigned to a job, terminal user, or
system task. See also address space.

Virtual Telecommunications Access Method
(VTAM). A set of programs that control communication
between terminals and application programs running
under MVS.

VTAM. Virtual Telecommunications Access Method.

Glossary 421

W
warm start. A general term for a JES2 member
restart. See also hot start; quick start; single-member
warm start; all-member warm start.

writer. See output writer.

WTO. Write-to-operator

WTOR. Write-to-operator with reply

X
XFER. Transfer

XIT. Exit information table

XRT. Exit routine table

Numerics
3800 compatibility mode. Operating the 3800 model
3 printer as a 3800 Model 1 printer.

3800 model 3 startup. That process part of system
initialization when the 3800 model 3 printer is initializing.

422 z/OS V1R4.0 JES2 Macros

Index

Special characters
$$POST macro 19
$$WTO macro 22
$$WTOR macro 23
$#ADD macro 24
$#ALCHK macro 25
$#BLD macro 27
$#BUSY macro 27
$#CAN macro 30
$#CHK macro 30
$#DISPRO macro 31
$#GET macro 32
$#GETHDJ macro 34
$#JOE macro 35
$#JWEL macro 37

manage work JOEs 37
$#MOD macro 42
$#POST macro 42
$#PUT macro 43
$#REM macro 44
$#REP macro 45
$#TJEV macro 46
$ACTIVE macro 48
$ALESERV macro 49
$ALLOC macro 48
$AMODE macro 50
$ARMODE macro 51
$BERTTAB macro 52
$BFRBLD macro 54
$BLDMSG macro 55
$BLDQC macro 62
$BLDTGB macro 63
$CALL macro 63
$CBIO macro 66
$CFSEL macro 70
$CHECK macro 76
$CKPT macro 78
$CPOOL macro 79
$CWTO macro 86
$DCBDYN macro 89
$DCTDYN macro 89
$DCTTAB macro 90
$DEST macro 95
$DESTDYN macro 99
$DESTID macro 96
$DILBERT macro 100
$DISTERR macro 103
$DOGBERT macro 103
$DOGCAT macro 109
$DOGJQE macro 111
$DOGWSCQ macro 116
$DOM macro 118
$DORMANT macro 119
$DSPSERV macro 119
$DTEDYN macro 123
$DTETAB macro 124
$DVIDBLD macro 126

$ENTRY macro 127
$ENVIRON macro 130
$ERROR macro 131
$ESTAE macro 133
$EXCP macro 135
$EXIT macro 136
$EXTP macro 138
$FRECEL macro 139
$FRECMB macro 140
$FREEBUF macro 140
$FRELOK macro 142
$FREMAIN macro 143
$FREQC macro 144
$FREUCBS macro 146
$FREUNIT macro 146
$FSILINK macro 147
$GETABLE macro 147
$GETADDR macro 149
$GETASCB macro 150
$GETBLK macro 151
$GETBUF macro 152
$GETCEL macro 154
$GETCMB 156
$GETHP macro 157
$GETLOK macro 158
$GETMAIN macro 159
$GETQC macro 162
$GETRTN macro 163
$GETSMFB macro 165
$GETUCBS macro 165
$GETUNIT macro 167
$GETWORK 167
$IOERROR macro 169
$IOTBLD macro 169
$JBIDBLD macro 170
$JCAN macro 171
$JCT extension 11
$JCTX macro extension service

JECL statement 12
spool compatibility 13

$JCTXADD macro 173
$JCTXEXP macro 177
$JCTXGET macro 180
$JCTXREM macro 183
$JQEJNUM macro 185
$LOGMSG macro 186
$MID macro 187
$MODCHK macro 188
$MODELET macro 190
$MODEND macro 191
$MODLOAD macro 192
$MODULE macro 194
$MSG macro 205
$MVCL macro 206
$NATGET macro 207
$NHDADD marco 209
$NHDEXP macro 210
$NHDGET macro 212

© Copyright IBM Corp. 1988, 2002 423

$NHDREM macro 213
$NHDXMT macro 214
$PAIR macro 215
$PATCHSP macro 217
$PBLOCK macro 217
$PCEDYN macro 218
$PCETAB macro 220
$PCETERM macro 224
$PDBBLD macro 224
$PDBFIND macro 225
$PGSRVC macro 226
$POST macro 228
$POSTQ macro 231
$POSTXEQ macro 232
$PRPUT macro 233
$PURGE macro 234
$PUTABLE macro 234
$QADD macro 235
$QBUSY macro 236
$QCTGEN macro 238
$QGET macro 239
$QJIX macro 242
$QJQE macro 243
$QLOC macro 246
$QLOCNXT macro 247
$QMOD macro 248
$QPUT macro 249
$QREM macro 250
$QSUSE macro 251
$QUESMFB macro 252
$QUEUE macro 252
$RDIRTAB macro 253
$REPLYV macro 254
$RESTORE macro 255
$RETABLE macro 256
$RETBLK macro 257
$RETSAVE macro 257
$RETURN macro 258
$RETWORK macro 259
$RUSE macro 260
$SAVE macro 260
$SCAN facility 266, 364
$SCAN macro 262
$SCAN table 365
$SCAN table examples 370
$SCANB macro 266
$SCANCOM macro 267
$SCAND macro 268
$SCANDIA macro 269
$SCANTAB macro 270
$SDUMP macro 284
$SEAS macro 285
$SEPPDIR macro 289
$SETAFF macro 289
$SETIDAW macro 292
$SETRP macro 293
$SJBFIND macro 293
$SJBLOCK macro 295
$SJBRQ macro 295
$SSIBEGN macro 296
$SSIEND macro 297

$STCK macro 298
$STIMER macro 298
$STMTLOG macro 299
$STORE macro 300
$SUBIT macro 301
$SYMREC macro 303
$SYMTAB macro 304
$TIDTAB macro 308
$TRACE macro 309
$TRACK macro 311
$TTIMER macro 312
$USERCBS 205
$VERIFY macro 313
$VERTAB macro 314
$VFL macro 315
$WAIT macro 316
$WSSETUP macro 320
$WSTAB macro 321
$WTO macro 326
$XECBSRV macro 334
$XMPOST macro 335

A
access

multi-address space 51
access list

definition 395
access register 395
accessibility 403
acquire a buffer

$GETBUF macro 152
acquire a DCT

$GETUNIT macro 167
acquire a lock

$GETLOK macro 158
acquire a track address

$TRACK 311
acquire SMF buffer

$GETSMFB macro 165
acquire storage

$GETMAIN macro 159
acquire storage area cell

$GETCEL macro 154
Add a table

$PUTABLE macro 234
add job queue element

$QADD macro 235
add work JOE to JOT

$#ADD macro 24
add work JOEs

$#JOE macro 37
address list entry token

definition 395
address space 284

getting the ASCB 150
posting a task 335
storage dump ($SDUMP macro) 284

affinity
$SETAFF macro 289

424 z/OS V1R4.0 JES2 Macros

ALET
definition 395

ALET service
$ALESERV macro 49

allocate a job number
$QJIX macro 242

allocate a unit record device
$ALLOC macro 48

ARMODE
multi-address space access 51

assembler instruction
SYSPARM 198

assembly environment
setting 130

assign message id
$MID macro 187

attach a JES2 DESTID
$DESTDYN macro 99

attach or delete a JES2 PCE
$PCEDYN macro 218

B
basic notation

macro 6
begin SSI function

$SSIBEGN macro 296
BERT table entries

$BERTTAB macro 52
BERTTAB

BERT table entries 52
block letter

generating, $PBLOCK macro 217
buffer 165

acquiring ($GETBUF) 152
acquiring ($GETSMFB macro) 165
freeing ($FREEBUF) 140
prefix

building ($BFRBLD macro) 54
queueing ($QUESMFB macro) 252

buffer obtaining 165
build a buffer prefix

$BFRBLD macro 54
build a device name

$DVIDBLD macro 126
build a JES2 message

$BLDMSG macro 55
build a job ID

$JBIDBLD macro 170
build a PDDB

$PDBBLD macro 224
build an IOT

$IOTBLD macro 169
build and map a DTE table

$DTETAB macro 124
build artificial JQE

using $DOGJQE macro 111
build backup storage for a scan

$SCANB 266
build quick cell pool

$BLDQC macro 62

build the verification table
$VERTAB macro 314

C
call a $SCAN facility comment service

$SCANCOM macro 267
call a $SCAN facility display service routine

$SCAND macro 268
call a subroutine

$CALL macro 63
call dynamic DTE service routine

$DTEDYN macro 123
call quick cell build/extend

$BLDQC macro 62
call the $STCK service routine

$STCK macro 298
call the $VERIFY service routine

$VERIFY macro 313
call the dynamic DCB service routine

$DCBDYN macro 89
call the dynamic DCT service routine

$DCTDYN macro 89
call the MODCHECK verification routine

$MODCHK macro 188
call the MODELET service routine

$MODELET macro 190
call the MODLOAD service routine

$MODLOAD macro 192
cancel

job
$JCAN macro 171

cancel work item
$#CAN macro 30

catastrophic error 131
indicating 131
indicating ($DISTERR) 103

cell pool
$CPOOL macro 79
get high private storage

$GETHP macro 157
managing 79

channel program
executing ($EXCP) 135

characteristic of JOEs 27
formatting 27
remove a pair from the JOT 44
replace a characteristics JOE 45
replace a work JOE 45

check checkpoint write completion
$CHECK macro 76

CMB (console message buffer)
freeing ($FRECMB macro) 140

coded value operand 7
command

syntax diagrams 2
command processor

write to operator
$CWTO macro 86

Index 425

console
message buffer

acquiring 156
control block address

$GETASCB macro 149
control block I/O

$CBIO macro 66
convert destination

$DEST macro 95
create a scan table 270
create a user PDIR

$SEPPDIR macro 289
create separator page

$PRPUT macro 233
creating a symptom record

$SYMREC macro 303
$SYMTAB macro 304

cross memory service 158
lock 158

CSA storage
freeing ($FRECEL macro) 139

current PCE 167
obtain work area 167

D
data space

definition
using 395

managed by JES2 119
data space service

$DSPSERV macro 119
DCT (device control table) 167

acquiring ($GETUNIT macro) 167
releasing ($FREUNIT macro) 146

DCT table map
$DCTTAB macro 90

deallocate a job number 242
define a quick cell control table

$QCTGEN macro 238
define a table pair

$PAIR macro 215
delete operator message

$DOM macro 118
deliver CAT

using $DOGCAT macro 109
deliver or get artificial JQE

$DOGJQE macro 111
deliver or get BERT data

$DOGBERT macro 103
deliver or get CAT

$DOGCAT macro 109
destination 95, 99

attach a destination ID 99
attaching ($DESTDYN macro) 99
converting ($DEST macro) 95

diagnostic message service
$SCANDIA macro 269

direct access 234
acquiring a track address 311
returning space, $PURGE macro 234

directing command response
to another console

$RDIRTAB macro 253
disability 403
do it later BERT services

$DILBERT macro 100
documents, licensed xxiv
DSPSERV macro

data space management 119
DTEDYN macro

call dynamic DTE service routine 123
dump storage

$SDUMP macro 284
dynamic service routine

DTE, $DTEDYN macro 123

E
end of module

generating, $MODEND macro 191
end SSI function

$SSIEND macro 297
environment

of a routine 163
error

disastrous indication 103
error recovery environment

$ESTAE 133
establish USING on a register

$RUSE macro 260
event 228

posted complete 19
posting, $POST macro 228

example
$SCAN table 370

execute JES2 channel program
$EXCP macro 135

execution processor
posted complete 232

exit 0 371
locates scan table 371

exit 19 371
locates scan table 371

EXPLICIT= macro parameter
$DESTID macro 96

EXPLICIT= parameter 96
extend quick cell pool

$BLDQC macro 62
extend the $JCT

$JCTXADD macro 173
$JCTXEXP macro 177

F
facility, general purpose subtasking

benefit 396
using

$SQD 396
$SUBIT 396

when to use 396

426 z/OS V1R4.0 JES2 Macros

FIFO (first-in first-out) queue
maintaining, $QUEUE macro 252

find and validate queue
$#JOE macro 35

find work JOEs
$#JOE macro 37

format a job number 242
format the JOEs

$#BLD macro 27
free a CMB

$FRECMB macro 140
free CMS or job lock

$FRELOK macro 142
free CSA cell

$FRECEL macro 139
free quick cell

$FREQC macro 144
freeing storage

$FREMAIN macro 143
UCB parameter list ($FREUCBS macro) 146

G
general purpose subtasking facility

benefit 396
using

$SQD 396
$SUBIT 396

when to use 396
generate a $REPLYV table entry

$REPLYV macro 254
generate a block letter

$PBLOCK macro 217
generate end of module

$MODEND macro 191
generate patch space

$PATCHSP macro 217
get a HASP/USER table entry

$GETABLE macro 147
get a storage cell

$GETBLK macro 151
get address of a routine

$GETRTN macro 163
get CAT

using $DOGCAT macro 109
get console message buffer

$GETCMB 156
get control block address

$GETADDR macro 149
get held JOE

$#GETHDJ macro 34
get network header section

$NHDGET macro 212
get quick cell

$GETQC macro 162

H
home ASCB

retrieving, $GETASCB macro 150

I
I/O error

logging, $IOERROR macro 169
IDAW (indirect data access word) 292
identify an exit 127
implementing

$SCAN table 365
indicate a catastrophic error

$ERROR macro 131
indicate a disastrous error

$DISTERR macro 103
initiate remote terminal I/O

$EXTP macro 138
installation-defined section

adds to an NJE data area
$NHDADD macro 209

expand an NJE data area
$NHDEXP macro 210

removes from a NJE data area
$NHDREM macro 213

interface for XECB service
$XECBSRV macro 334

interval timer 298
setting ($STIMER macro) 298
testing ($TTIMER macro) 312

IOT build 169

J
job

lock 158
lock freeing ($FRELOK) 142

job cancellation
$IOTBLD macro 169
$JCAN macro 171

job ID 170
$JBIDBLD macro 170

job number service
allocate job number 242
deallocate job number 242

Job Output Services
$#GET macro searching 32
returning one ($#PUT macro) 43

JOE busy system indicator
set 27

JQE busy system indicator
set 236

K
keyboard 403

L
licensed documents xxiv
link the functional subsystem interface

$FSILINK macro 147
locate a $JCT extension

$JCTXGET macro 180

Index 427

locate a PDDB
$PDBFIND macro 225

locate SJB
$SJBFIND macro 293

locating a JQE
$QLOC macro 246

locating an NAT element
$NATGET macro 207

lock 158
cms

acquiring ($GETLOK macro) 158
freeing CMS or job lock 142
job

acquiring ($GETLOK macro) 158
lock the SJB

$SJBLOCK macro 295
log a job-related message

$LOGMSG macro 186
log an initialization statement

$STMTLOG macro 299
log I/O error

$IOERROR macro 169
LookAt message retrieval tool xxiv

M
macro

coded value operand 7
description 10
metasymbol 8
notation 6
operand representation 6
operands with value mnemonics 6
register notation 9
register stability 9
value mnemonics

description 7
macro basic notation 6
macro keyword specification 6
macro parameter 2
macro selection table 10, 11
macro service 1

aid to recovery processing 1
coding aid service 1
console service 1
debug service 1
direct-access space service 1
error service 1
general storage management 1
how provided 2
initialization service 1
input/output service 1
installation exit service 1
job output service 1
job queue service 1
parameters passed 2
print/punch output service 1
synchronization service 1
system management facilities service 1
table service 2
time service 1

macro service (continued)
unit service 1
virtual page service 1
work area management 1

maintain a FIFO queue
$QUEUE macro 252

manage storage cell
in high private

$GETHP macro 157
manage the thread JOE exclusion vector

$#TJEV macro 46
manager work JOEs 37
managing cell pools 79
map

BERT table entries 52
map a PCE table entry

$PCETAB macro 220
map and generate work selection table entry

$WSTAB macro 321
map trace id table

$TIDTAB macro 308
master control table (MCT) 364

scanning 364
MCT

See master control table (MCT)
message id 187

$MID macro 187
message retrieval tool, LookAt xxiv
message service

using $SCANDIA 269
metasymbol 8
modify the JQE

$QMOD macro 248
move storage

$MVCL macro 206
move work JOE

$#MOD macro 42
multi-address space access

$ARMODE macro 51

N
NJE data area

add to
data set header 209
job header 209
job trailer 209

expand to
job header or data set header 210

nodes attached table
locating an element 207

O
obtain a spool record

$#ALCHK macro 25
record

obtaining ($#ALCHK macro) 25
obtain a UCB address

$GETUCBS macro 165

428 z/OS V1R4.0 JES2 Macros

obtain a work area
$GETWORK 167

obtain address of JQE queue head
$QJQE macro 243

obtain job queue element
$QGET macro 239

obtain save area
$SAVE macro 260

operand 5
coded value 7
keyword 5
optional 5
positional 5
required 5
type 5

operator message
area

writing, $MSG macro 205
deleting, $DOM macro 118

P
packed parameter 4
page fix 226

$PGSRVC macro 226
page free 226

$PGSRVC macro 226
page release 226

$PGSRVC macro 226
parameter

specifying 4
parameter specification 4
parameter type

address 4
value 4

patch space 217
generating, $PATCHSP macro 217

PCE (processor control element) 167
$PCETERM macro 224
obtain work area 167
saving registers 300
termination, $PCETERM macro 224

PCE table
generating entries, $PCETAB macro 220

PDIR (peripheral data information record) 289
peripheral data definition block

$PDBFIND macro 225
post a JES2 event complete

$$POST macro 19
post a task in another address space

$XMPOST macro 335
post an event complete

$POST macro 228
post event 228

$POST macro 228
post output device processor

$#POST macro 42
post resource 228

$POST macro 228
post the JES2 execution processor

$POSTXEQ macro 232

posting 335
task 335

primary ASCB
retrieving, $GETASCB macro 150

process checkpoint spool I/O
$#CHK macro 30

process JOE disposition
$#DISPRO macro 31

processor 48
specify as active ($ACTIVE) 48

provide a MIT
$MODULE macro 194

provide an entry point
$ENTRY macro 127

provide an exit point
$EXIT macro 136

purge work JOEs
$#JOE macro 37

Q
queue 35

finding ($#JOE macro) 35
maintaining, $QUEUE macro 252
shared

synchronizing the use ($QSUSE macro) 251
validating ($#JOE macro) 35

queue a SMF buffer
$QUESMFB macro 252

queue track group blocks
$BLDTGB macro 63

queueing
initiate subtask queueing 301

queueing a subtask
$SUBIT macro 301

quick post facility
$POSTQ macro 231

R
recursive scan 364
register 255

notation in a macro 9
restoring ($RESTORE macro) 255
saving ($SAVE macro) 260
stability macro 9
storing ($STORE macro) 300

register notation
macro 9

register stability
macro 9

register, addressing 395
release a DCT

$FREUNIT macro 146
release storage

$FREMAIN macro 143
remote terminal

initiate I/O ($EXTP macro) 138
remove a $JCT extension

$JCTXADD macro 183

Index 429

remove a JQE
$QREM macro 250

Remove a table
$RETABLE macro 256

remove JOE pair from JOT
$#REM macro 44

replace a characteristics JOE
$#REP macro 45

replace a work JOE
$#REP macro 45

requeue the SJB
$SJBRQ macro 295

resource 228
posting, $POST macro 228

restore register
$RESTORE macro 255

restore registers
$RETURN macro 258

retrieve the ASCB
$GETASCB macro 150

return a JES2 buffer 140
return a JOE

$#PUT macro 43
unfinished 43

return a JQE
$QPUT macro 249

return artificial JQE
using $DOGJQE macro 111

return direct access space
$PURGE macro 234

return save area
$RETSAVE macro 257

return storage cell to pool
$RETBLK macro 257

return to the caller
$RETURN macro 258

return work area
$RETWORK macro 259

route code 95
converting destination to 95

routine
set environment 163

S
SAF

invoking 285
SAF (security authorization facility)

invoking 285
SAF (security authorization facility) invocation

$SEAS macro 285
save area 257

freeing ($RETURN macro) 258
obtaining ($SAVE macro) 260
returning ($RETSAVE macro) 257
storing registers ($STORE macro) 300

scan
$SCAN facility 364
$SCANTAB 270
backup storage 266

scan (continued)
initialization statement

$SCAN 262
input structure 364
recursively 364
scan 364
tables ($SCANTAB) 270

scan of parameter statements 364
schedule a checkpoint

$CKPT macro 78
search JOT for JOE

$#GET macro 32
secondary ASCB

retrieving, $GETASCB macro 150
separator page 233

creating, $PRPUT macro 233
services provided by a macro

called routine 2
inline code 2

set address mode
$AMODE macro 50

set assembly environment
$ENVIRON macro 130

set busy system indicator
$#BUSY macro 27
$QBUSY macro 236

set IDAW
$SETIDAW macro 292

set interval timer
$STIMER macro 298

set recovery processing option
$SETRP macro 293

set work selection value
$WSSETUP macro 320

shared queue
synchronizing ($QSUSE macro) 251

shortcut keys 403
SJB 293, 295

SJB ($SJBFIND macro) 293
SJB ($SJBRQ macro) 295

specify processor as active
$ACTIVE macro 48

specify processor inactive
$DORMANT macro 119

SSI 297
See also subsystem interface
end ($SSIEND macro) 297

storage 284
acquiring ($GETMAIN macro) 159
cell acquiring ($GETCEL macro) 154
dumping ($SDUMP macro) 284
freeing ($FREMAIN macro) 143
freeing CSA 139

store register
$STORE macro 300

subroutine
calling, $CALL macro 63

subsystem interface 296
begin ($SSIBEGN macro) 296
end ($SSIEND macro) 297

430 z/OS V1R4.0 JES2 Macros

subtask
initiate queueing 301

SUPPRES= macro parameter
$DESTID macro 98

symptom record
creating 303, 304

synchronize 251
shared queues ($QSUSE macro) 251

synchronize use of a shared queue
$QSUSE macro 251

syntax diagrams
how to read 2

SYSPARM=
assembler instruction 198
options 198

SYSPARM= options
relation to $MODULE 198

T
table

macro selection 10, 11
table generate

$REPLYV macro 254
table map

$SCANTAB 270
$TIDTAB 308
PCE, $PCETAB macro 220

table maps
$DCTTAB macro 90

table pairs
description 337

tables
creating

$TIDTAB entry 360
$TRACE macro 360

task 335
posting

$XMPOST macro 335
termination of PCE

$PCETERM macro 224
test interval timer

$TTIMER macro 312
timer 298

setting ($STIMER macro) 298
testing ($TTIMER macro) 312

trace 308
id table map ($TIDTAB macro) 308

trace a JES2 activity
$TRACE macro 309

track
address, acquiring ($TRACK macro) 311

track group blocks
queueing, $BLDTGB 63

transmitting an NJE data area
across the network

$NHDXMT macro 214

U
UCB

See UCB (unit control block)
UCB (unit control block) 146

freeing UCB parameter list 146
obtaining its address ($GETUCBS) 165

UCB address
obtaining, $GETUCBS macro 165

unfinished JOE 43
unit record 48

allocation, $ALLOC macro 48
user communication table (UCT) 341
USING on a register

establish 260

V
variable field length operation

$VFL macro 315
virtual page service

$PGSRVC macro 226

W
wait for a JES2 event

$WAIT macro 316
work area

obtaining ($GETWORK macro) 167
work JOEs 27

formatting 27
remove a pair from the JOT 44
replace a characteristics JOE 45
replace a work JOE 45

work/characteristic JOE pair 24
write to operator

$$WTO JES2 subtask 22
$$WTO macro 22
$$WTOR macro with reply 23
command processor

$CWTO macro 86
JES2 subtask with reply

$$WTOR macro 23
message area

$MSG macro 205

Index 431

432 z/OS V1R4.0 JES2 Macros

Readers’ Comments — We’d Like to Hear from You

z/OS
JES2 Macros

Publication No. SA22-7536-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7536-02

SA22-7536-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in U.S.A.

SA22-7536-02

	Contents
	Figures
	Tables
	About This Document
	Who Should Use This Document
	Where to Find More Information
	Additional Information
	Accessing z/OS™ licensed documents on the Internet
	Using LookAt to look up message explanations
	Determining If a Publication Is Current

	Summary of Changes
	Chapter 1. Macro Overview
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	Macro Expansion
	Specify JES2 Macro Instructions
	Basic Notation Used To Describe Macro Instructions
	Operand Representation
	Operands with Value Mnemonics
	Coded Value Operands
	Metasymbols

	Special Register Notation
	Register Stability

	Macro Selection Table
	Using the $JCTX Macro Extension Service
	Determining the Amount of Spool Space Used by $JCT Extensions
	Examples of the $JCTX Macro Extension Service
	Example 1: Transmitting Separator Notes Through $JCT Extensions
	Example 2: Using $JCTX Extensions To Maintain Spool Compatibility
	Sample Exit 6 for Spool Compatibility

	Chapter 2. Macro Names List
	Executable Macros
	Mapping Macros

	Chapter 3. JES2 Programmer Macros
	$$POST – Post a JES2 Event Complete from Another Task
	Format Description
	Environment

	$$WTO – JES2 Subtask Write to Operator
	Format Description
	Environment

	$$WTOR – JES2 Subtask Write to Operator with Reply
	Format Description
	Environment

	$#ADD – Add a Work/Characteristics JOE Pair to the JOT
	Format Description
	Return Codes
	Environment

	$#ALCHK – Obtain a Spool Record for Output Checkpointing
	Format Description
	Environment

	$#BLD – Format JOEs
	Format Description
	Environment

	$#BUSY – Set or Test the Busy System Indicator of a JOE
	Format Description
	Environment

	$#CAN – Cancel All Work Items Not Currently Being Processed for a Specific Job
	Format Description
	Environment

	$#CHK – Process Print/Punch Checkpoint Spool I/O
	Format Description
	Environment

	$#DISPRO – Process JOE Disposition
	Format Description
	Environment

	$#GET – Search the JOT Class Queues for an Output Element which Matches the Requesting Specification
	Format Description
	Environment

	$#GETHDJ – Get Held JOE
	Format Description
	Environment

	$#JOE – Find and Validate Queue
	Format Description
	Environment

	$#JWEL – JOE Writer Exclude List (JWEL) Services
	Format Description
	Programming Considerations
	Return Codes
	Environment

	$#MOD – Move a Work JOE from One Queue to Another in the JOT
	Format Description
	Environment

	$#POST – Post Output Device Processors
	Format Description
	Environment

	$#PUT – Return an Unfinished Job Output Element (JOE) to the JOT for Later Processing
	Format Description
	Environment

	$#REM – Remove a Work/Characteristics JOE Pair from the JOT
	Format Description
	Environment

	$#REP – Replace a Work or Characteristics JOE
	Format Description
	Return Codes
	Environment

	$#TJEV – Manage the Thread JOE Exclusion Vector
	Format Description
	Return Codes
	Environment

	$ACTIVE – Specify Processor is Active
	Format Description
	Environment

	$ALLOC – Allocate a Unit Record Device
	Format Description
	Environment

	$ALESERV – JES2 ALET Services
	Format Description
	Programming Notes
	Return Codes
	Environment

	$AMODE – Set the Addressing Mode
	Format Description
	Environment

	$ARMODE – JES2 Multi-Address Space Access
	Format Description
	Environment

	$BERTTAB – Map Block Extension Reuse Table (BERT) Table Entries
	Format Description
	Boundary Form
	Data Definition Form
	Search Key Form

	Environment

	$BFRBLD – Construct a JES2 Buffer Prefix
	Format Description
	Environment

	$BLDMSG – Build a Message Line
	Format Description
	Register Contents When $BLDMSG is Invoked
	Register Contents on Exit from $BLDMSG
	Return Codes
	Usage Notes
	Environment

	$BLDQC – Call the Quick Cell Build/Extend Routine
	Format Description
	Environment

	$BLDTGB – Queue TGBs to the HASPOOL Processor
	Format Description
	Environment

	$CALL – Call a Subroutine from JES2
	Format Description
	Programming Considerations
	Environment

	$CBIO – Control Block I/O Routine
	Format Description
	Register Contents When $CBIO is Invoked
	Register Contents on Exit from $CBIO
	Return Codes
	Environment

	$CFSEL – Select Label to Process a Command Operand String
	Format Description
	Register Contents When $CFSEL is Invoked
	Register Contents on Exit from $CFSEL
	Return Codes
	Usage Notes
	Environment
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	$CHECK – Check for Completion of a Checkpoint Write
	Format Description
	Environment

	$CKPT – Schedule the Checkpoint of an Element
	Format Description
	Environment

	$CPOOL – Build/Delete/Modify/Query a Cell Pool
	Format Description - Execute Form
	Format Description - List Form
	Return Codes
	Environment

	$CWTO – Command Processor Write to Operator
	Format Description
	Usage Notes
	Environment

	$DCBDYN – Call the Dynamic DCB Service Routine
	Format Description
	Return Codes
	Environment

	$DCTDYN – Call the Dynamic DCT Service Routine
	Format Description
	Return Codes
	Environment

	$DCTTAB – Map DCT table entries
	Format Description
	Boundary Form
	Entry Form

	Environment

	$DEST – Convert Symbolic Destinations and Binary Route Codes
	Format Description
	Return Codes
	Environment

	$DESTDYN – Attach a JES2 DESTID
	Format Description
	Return Codes
	Environment

	$DILBERT – Do It Later BERT Services
	Format Description
	Environment
	Return Codes

	$DISTERR – Indicate Disastrous Error
	Format Description
	Environment

	$DOGBERT – Deliver or Get BERT Data
	Format Description
	Environment
	Return Codes

	$DOGCAT – Deliver or Get CAT (Class Attribute Table)
	Format Description
	Environment
	Return Codes

	$DOGJQE – Deliver or Get JQE
	Format Description
	Return Codes
	Environment

	$DOGWSCQ – Deliver or Get Workload Management (WLM) Service Class
	Format Description
	Environment
	Return Codes

	$DOM – Delete Operator Message
	Format Description
	Environment

	$DORMANT – Specify Processor is Inactive
	Format Description
	Environment

	$DSPSERV – JES2 Data Space Services
	Format Description
	Programming Considerations
	Environment

	$DTEDYN – Call the Dynamic DTE Service Routines
	Format Description
	Environment

	$DTETAB – Build and Map the DTE Tables
	Format Description
	Boundary Form
	Entry Form

	Environment

	$DVIDBLD – Build a Device Name from a Device Identifier
	Format Description
	Environment

	$ENTRY – Provide Entry to JES2 Assembly Module
	Format Description
	Environment

	$ENVIRON – Set Assembly Environment
	Format Description
	Environment

	$ERROR – Indicate Catastrophic Error
	Format Description
	Environment

	$ESTAE – JES2 Error Recovery Environment
	Format Description
	Environment

	$EXCP – Execute JES2 Channel Program
	Format Description
	Environment

	$EXIT – Provide Exit Point
	Format Description
	Environment

	$EXTP – Initiate Remote Terminal Input/Output Operation
	Format Description
	Environment

	$FRECEL – Free an Extended Common Storage Area (ECSA) Cell
	Format Description
	Environment

	$FRECMB – Free a Console Message Buffer
	Format Description
	Environment

	$FREEBUF – Return a JES2 Buffer to the JES2 Buffer Pool
	Format Description
	Environment

	$FRELOK – Free the MVS CMS Lock, LOCAL, or JES2 Job Lock
	Format Description
	Environment

	$FREMAIN – Branch-Entry FREEMAIN Services
	Format Description
	Environment

	$FREQC – Free Quick Cell
	Format Description
	Environment

	$FREUCBS – Free UCB Parameter List Storage
	Format Description
	Environment

	$FREUNIT – Release a Unit Device Control Table (DCT)
	Format Description
	Environment

	$FSILINK – Link the Functional Subsystem Interface
	Format Description
	Environment

	$GETABLE – Get HASP/USER Table Entries
	Format Description
	Environment

	$GETADDR – Get a Control Block Address
	Format Description
	Environment

	$GETASCB – Retrieve the Primary, Secondary, or Home ASCB
	Format Description
	Environment

	$GETBLK – Get a Storage Cell from a Free Cell Pool
	Format Description
	Environment

	$GETBUF – Acquire a Buffer from a JES2 Buffer Pool
	Format Description
	Return Codes
	Environment

	$GETCEL – Acquire an Extended Common Storage (ECSA) Area Cell
	Format Description
	Return Codes
	Environment

	$GETCMB – Get Console Message Buffers
	Format Description
	Return Codes
	Register Contents When $GETCMB Returns Control
	Environment

	$GETHP – Get High Private Cell Pool
	Format Description
	Environment
	Programming Requirements

	$GETLOK – Acquire the MVS CMS, LOCAL, or JES2 Job Lock
	Format Description
	Environment

	$GETMAIN – Branch-Entry GETMAIN Services
	Format Description
	Environment

	$GETQC – Call the Quick Cell Get Routine
	Format Description
	Environment

	$GETRTN – Get the Address of a Routine
	Format Description
	Environment

	$GETSMFB – Acquire a JES2 SMF Buffer from the JES2 SMF Buffer Pool
	Format Description
	Environment

	$GETUCBS – Obtain a UCB Address
	Format Description
	Return Codes
	Programming Considerations
	Environment

	$GETUNIT – Acquire a Unit Device Control Table (DCT)
	Format Description
	Environment

	$GETWORK – Obtain a Work Area
	Format Description
	Environment

	$IOERROR – Log Input/Output Error
	Format Description
	Environment

	$IOTBLD – Build an Input/Output Table (IOT)
	Format Description
	Return Codes
	Environment

	$JBIDBLD – Build A JES2 Job ID from a Binary Job Number
	Format Description
	Environment

	$JCAN – Cancel Job
	Format Description
	Environment

	$JCTXADD – Add a $JCT Control Block Extension
	Format Description
	Return Codes
	Environment
	Programming Requirements
	Restrictions
	Registers on Entry
	Registers on Exit
	Example

	$JCTXEXP – Expand a $JCT Control Block Extension
	Format Description
	Return Codes
	Environment
	Programming Requirements
	Restrictions
	Registers on Entry
	Registers on Exit
	Example

	$JCTXGET – Locate a $JCT Control Block Extension
	Format Description
	Return Codes
	Environment
	Programming Requirements
	Restrictions
	Registers on Entry
	Registers on Exit
	Example

	$JCTXREM – Remove a $JCT Control Block Extension
	Format Description
	Return Codes
	Environment
	Programming Requirements
	Restrictions
	Registers on Entry
	Registers on Exit
	Example

	$JQEJNUM
	Format Description
	Return Codes
	Environment

	$LOGMSG – Log a Job-related Message
	Format Description
	Return Codes
	Environment

	$MID – Assign JES2 Message Identification
	Format Description
	Environment

	$MODCHK – Load Module Verification
	Format Description
	Return Codes
	Reason Codes for Return Code 4

	Environment

	$MODELET – Load Module Deletion
	Format Description
	Return Codes
	Environment

	$MODEND – Generate End of Module
	Format Description
	Environment

	$MODLOAD – Module Load
	Format Description
	Return Codes
	Reason Codes for Return Code 8

	Environment

	$MODULE – Prepare a JES2 Module or Expand Control Block Mappings
	Preparing a JES2 Module
	Expanding MVS or JES2 Control Block Mappings
	Format Description - Preparing a JES2 Module
	Format Description - Expanding Control Block Mappings
	Parameter Descriptions
	Environment

	$MSG – Write to Operator Message Area
	Format Description
	Environment

	$MVCL – Move More Than 256 Bytes of Storage
	Format Description
	Environment

	$NATGET – Locate an Element in the NAT
	Format Description
	Return Codes
	Environment

	$NHDADD – Adds an Installation-Defined Section to an NJE Data Area
	Format Description
	Return Codes

	$NHDEXP – Expand an NJE Data Area
	Format Description
	Return Codes

	$NHDGET – Get the Network Header Section
	Format Description
	Environment

	$NHDREM – Removes an Installation-Defined Section from a NJE Data Area
	Format Description
	Return Codes

	$NHDXMT – Transmitting an NJE Data Area Across the Network
	Format Description
	Return Codes
	Environment

	$PAIR – Define a Table Pair
	Format Description
	Environment

	$PATCHSP – Generate Patch Space
	Format Description
	Environment

	$PBLOCK – Block Letter Services
	Format Description
	Environment

	$PCEDYN – Attach or Delete a JES2 PCE
	Format Description
	Environment

	$PCETAB – Generate or Map PCE Table Entries
	Format Description
	Boundary Form
	Entry Form

	Environment

	$PCETERM – Processor Control Element (PCE) Termination
	Format Description
	Environment

	$PDBBLD – Build a Peripheral Data Definition Block (PDDB)
	Format Description
	Return Codes
	Environment

	$PDBFIND – Locate a Peripheral Data Definition Block (PDDB)
	Format Description
	Return Codes
	Environment

	$PGSRVC – Perform a Virtual Page Service
	Format Description
	Environment

	$POST – Post a JES2 Event Complete
	Format Description
	Environment

	$POSTQ – Quick Post Facility
	Format Description
	Environment

	$POSTXEQ – Post the JES2 Execution Processor
	Format Description
	Environment

	$PRPUT – Create Separator Pages
	Format Description
	Return Codes
	Environment

	$PURGE – Return Direct-Access Space
	Format Description
	Environment

	$PUTABLE – Add Hasp/User Table Entry
	Format Description
	Return Codes
	Environment

	$QADD – Add Job Queue Element to the JES2 Job Queue
	Format Description
	Environment

	$QBUSY – Set or Test the Busy System Indicator of a JQE
	Format Description
	Environment

	$QCTGEN – Define a Quick Cell Control Table
	Format Description
	Environment

	$QGET – Obtain Job Queue Element from the JES2 Job Queue
	Format Description
	Environment

	$QJIX – JES2 Job Number Services
	Format Description
	Return Codes
	Environment

	$QJQE – Obtain Address of JQE Queue Head
	Format Description
	Environment

	$QLOC – Locate Job Queue Element for Specific Job
	Format Description
	Return Codes
	Environment

	$QLOCNXT
	Format Description
	Return Codes
	Environment

	$QMOD – Modify Job Queue Element in the JES2 Job Queue
	Format Description
	Environment

	$QPUT – Return Job Queue Element to the JES2 Job Queue
	Format Description
	Environment

	$QREM – Remove Job Queue Element from the JES2 Job Queue
	Format Description
	Environment

	$QSUSE – Synchronize to Use Shared Queues
	Format Description
	Environment

	$QUESMFB – Queue a JES2 SMF Buffer on the Busy Queue
	Format Description
	Environment

	$QUEUE – Maintain a First-in First-out (FIFO) Queue
	Format Description
	Environment

	$RDIRTAB – Build Table to Redirect Responses to Specific Commands
	Format Description
	Environment

	$REPLYV – Generate $REPLYV Table Entries
	Format Description
	Examples

	Environment

	$RESTORE – Restore Registers from the Save Area
	Format Description
	Environment

	$RETABLE – Removes Hasp/User Table Entry
	Format Description
	Return Codes
	Environment

	$RETBLK – Return a Storage Cell to a Free Cell Pool
	Format Description
	Environment

	$RETSAVE – Return a JES2 Save Area
	Format Description
	Environment

	$RETURN – Restore Registers, Free the JES2 Save Area, and Return to the Caller
	Format Description
	Environment

	$RETWORK – Return a Work Area
	Format Description
	Environment

	$RUSE – Establish USING on a Register
	Format Description
	Environment

	$SAVE – Obtain JES2 Save Area and Save Registers
	Format Description
	Environment

	$SCAN – Scan Initialization Parameters
	Format Description
	Return Codes
	Environment

	$SCANB – Backup Storage for a Scan
	Format Description
	Environment

	$SCANCOM – Call the $SCAN Facility Comment Service Routine
	Format Description
	Return Codes
	Environment

	$SCAND – Call the $SCAN Facility Display Service Routine
	Format Description
	Environment

	$SCANDIA – $SCAN Diagnostic Message Service
	Format Description
	Environment

	$SCANTAB – Scan Table
	Format Description
	Boundary Form
	Entry Form

	Environment

	$SDUMP – Take a SDUMP of Storage
	Format Description
	Environment

	$SEAS – Security Authorization Services
	Format Description
	Return Codes
	Usage Notes
	Environment

	$SEPPDIR – Create a User Peripheral Data Information Record (PDIR)
	Format Description
	Environment

	$SETAFF – Set Affinity
	Format Description
	Environment
	Examples

	$SETIDAW – Set Indirect Data Access Word (IDAW)
	Format Description
	Environment

	$SETRP – Set Recovery Processing Options
	Format Description
	Environment

	$SJBFIND – Locate a Subsystem Job Block (SJB)
	Format Description
	Return Codes
	Programming Requirement
	Environment

	$SJBLOCK – Lock a Specific Subsystem Job Block (SJB)
	Format Description
	Return Codes
	Environment

	$SJBRQ – Requeue a Specific Subsystem Job Block (SJB)
	Format Description
	Return Codes
	Environment

	$SSIBEGN – Begin a Subsystem Interface (SSI) Function
	Format Description
	Environment

	$SSIEND – End a Subsystem Interface (SSI) Function
	Format Description
	Environment

	$STCK – Call the $STCK Service Routine
	Format Description
	Environment

	$STIMER – Set Interval Timer
	Format Description
	Environment

	$STMTLOG – Log an Initialization Statement
	Format Description
	Environment

	$STORE – Store Registers in the Current Processor Save Area
	Format Description
	Environment

	$SUBIT – Initiate Subtask Queueing
	Format Description
	Return Codes
	Environment

	$SYMREC – Create and Issue a Symptom Record
	Format Description
	Return Codes
	Environment

	$SYMTAB – Create a Symptom Record Table
	Format Description
	Environment

	$TIDTAB – Generate the Trace ID Table DSECT
	Format Description
	Environment

	$TRACE – Trace a JES2 Activity
	Format Description
	Environment

	$TRACK – Acquire a Direct-Access Track Address
	Format Description
	Return Codes
	Environment

	$TTIMER – Test Interval Timer
	Format Description
	Environment

	$VERIFY – Verify a Control Block
	Format Description
	Return Codes
	Environment

	$VERTAB – Build the Inline Verification Tables
	Format Description
	Boundary Form
	Entry Form

	Environment

	$VFL – Variable Field Length Instruction Operation
	Format Description
	Environment

	$WAIT – Wait for a JES2 Event
	Format Description
	Environment

	$WSSETUP – Set Values Required for Work Selection
	Format Description
	Environment

	$WSTAB – Map and Generate the Work Selection Table Entries
	Format Description
	Boundary Form
	Entry Form

	Environment

	$WTO – JES2 Write to Operator
	Format Description – Standard Form
	Format Description – Execution Form
	Format Description – List Form
	Environment

	$XECBSRV – Interface for Extended Event Control Block (XECB) Services
	Format Description
	Environment

	$XMPOST – POST Task in Another Address Space
	Format Description
	Environment

	Appendix A. Using JES2 Table Pairs
	What Are JES2 Table Pairs?
	JES2 Table Pairs Versus JES2 Exits
	Concepts
	Master Control Table
	General Table Coding Conventions

	Dynamic Tables Versus Installation Tables
	Examples of Table Pairs
	Processor Control Elements (PCE) Tables
	PCE Control Blocks and Macros
	A JES2 PCE Table
	An Installation PCE Table
	A Dynamic PCE Table
	Coding the Other Pieces

	Daughter Task Element (DTE) Tables
	DTE Control Blocks and Macros
	A JES2 DTE Table
	An Installation DTE Table
	A Dynamic DTE Table
	Coding the Other Pieces

	Work Selection (WS) Tables
	WS Control Blocks and Macros
	A JES2 WS Table
	An Installation WS Table
	A Dynamic WS Table
	Coding the Other Pieces

	Trace Identifiers (TID) Tables
	TID Control Blocks and Macros
	A JES2 TID Table
	An Installation TID Table
	A Dynamic TID Table
	Coding the Other Pieces

	Creating a Trace Table Using the $TRACE Macro
	Block Extension Reuse Table (BERT) Tables
	BERT Control Blocks and MACROS
	A JES2 BERT Table
	An Installation BERT Table
	A Dynamic BERT Table
	Coding the Other Pieces

	JES2 $SCAN Facility
	$SCAN-Related Control Blocks
	Implementing $SCAN Tables
	Examples of $SCAN Tables

	Appendix B. Table Pairs Coding Example
	$USERCBS - Generates User Control Blocks
	$SCYWORK - Processor Work Area
	$SCDWORK - Subtask Work Area
	$UCT - User Communication Table
	EXIT 0 - Initialization
	User Extension Code and Tables
	USCTPCE - INITIAL ENTRY POINT
	USCTDTE - SECURITY SUBTASK, INITIAL ENTRY POINT
	USCTDTE - SECURITY SUBTASK, MAIN PROCESSING
	USCTDTE - SECURITY SUBTASK, TERMINATION
	TROUTE255 - TRACING ROUTINE FOR SAF CALL
	WSTRKGRP - WORK SELECTION ROUTINE
	TABLES

	Appendix C. Miscellaneous Facilities Support
	Generalized JES2 Dispatcher Support
	Data Space Usage
	$ARMODE
	$DSPSERV

	General Purpose Subtasking Facility
	Using the General Purpose Subtasking Facility

	Invoking the Security Authorization Facility (SAF)
	Using $SEAS to invoke SAF

	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

